3D Scene Modeling Method and Feasibility Analysis of River Water-Land Integration

Xiaoguang Ruan, Fanghao Yang, Meijing Guo, Chao Zou
{"title":"3D Scene Modeling Method and Feasibility Analysis of River Water-Land Integration","authors":"Xiaoguang Ruan, Fanghao Yang, Meijing Guo, Chao Zou","doi":"10.14358/pers.22-00127r2","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of rapid construction of a river three-dimensional 3D scene, this article integrates remote sensing, 3D modeling, and CityEngine technology to construct a 3D scene model reconstruction method of river water-land integration. The method includes intelligent extraction\n of underwater topography, refined modeling of hydraulic structures, and construction of a water-land integrated real scene model. Based on this method, the high-fidelity land-underwater seamless digital terrain and the water-land 3D real scene models can be formed. Through experiments, the\n feasibility and limitations of this method are verified. It can effectively extract the shallow underwater terrain of inland rivers, and the overall accuracy of the study area is less than 2 m. The performance of the seamless fusion 3D terrain is better than the public digital elevation model\n data set. In the inland basin of Class I to II water quality, it can meet the needs of intelligent perception of a river- and lake-integrated 3D scene model.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.22-00127r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problem of rapid construction of a river three-dimensional 3D scene, this article integrates remote sensing, 3D modeling, and CityEngine technology to construct a 3D scene model reconstruction method of river water-land integration. The method includes intelligent extraction of underwater topography, refined modeling of hydraulic structures, and construction of a water-land integrated real scene model. Based on this method, the high-fidelity land-underwater seamless digital terrain and the water-land 3D real scene models can be formed. Through experiments, the feasibility and limitations of this method are verified. It can effectively extract the shallow underwater terrain of inland rivers, and the overall accuracy of the study area is less than 2 m. The performance of the seamless fusion 3D terrain is better than the public digital elevation model data set. In the inland basin of Class I to II water quality, it can meet the needs of intelligent perception of a river- and lake-integrated 3D scene model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
河流水陆一体化三维场景建模方法及可行性分析
本文针对河流三维三维场景快速构建的问题,结合遥感、三维建模和CityEngine技术,构建了河流水陆一体化的三维场景模型重建方法。该方法包括水下地形的智能提取、水工建筑物的精细建模和水陆一体实景模型的构建。基于该方法,可以形成高保真的陆-水无缝数字地形和陆-水三维真实场景模型。通过实验验证了该方法的可行性和局限性。能够有效提取内陆河浅层水下地形,研究区整体精度小于2 m。无缝融合三维地形的性能优于公共数字高程模型数据集。在一至二类水质的内陆流域,可以满足河湖一体化三维场景模型的智能感知需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ReLAP-Net: Residual Learning and Attention Based Parallel Network for Hyperspectral and Multispectral Image Fusion Book Review ‐ Top 20 Essential Skills for ArcGIS Pro A Surface Water Extraction Method Integrating Spectral and Temporal Characteristics Assessing the Utility of Uncrewed Aerial System Photogrammetrically Derived Point Clouds for Land Cover Classification in the Alaska North Slope GIS Tips & Tricks ‐ USGS Adds 100K Topo Scale to OnDemand Map Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1