The Consistency of Size Effect: Time Periods, Regression Methods, and Database Selection

Robin K. Chou, M. Huang, Jun-Biao Lin, Jen Tsung Hsu
{"title":"The Consistency of Size Effect: Time Periods, Regression Methods, and Database Selection","authors":"Robin K. Chou, M. Huang, Jun-Biao Lin, Jen Tsung Hsu","doi":"10.1109/HIS.2009.24","DOIUrl":null,"url":null,"abstract":"We try to reconcile the findings of prior size effect studies by re-examining the issue with different time periods, regression methods, and database selection. We test whether the size effect varies in relation to the time period, whether extreme observations cause the size effect, by experimenting with different regression methods, and whether the survivorship bias in the COMPUSTAT database induces the size effect. It is found that the size effect is highly significant for data from the earlier time period, but its significance is noticeably reduced for the later time period. Extreme returns cannot fully account for the size effect, because the effect remains strong in the earlier time period even when the extreme observations are trimmed. Finally, we do not find any evidence indicating that the survivorship bias in the COMPUSTAT database is responsible for the size effect.","PeriodicalId":414085,"journal":{"name":"2009 Ninth International Conference on Hybrid Intelligent Systems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2009.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We try to reconcile the findings of prior size effect studies by re-examining the issue with different time periods, regression methods, and database selection. We test whether the size effect varies in relation to the time period, whether extreme observations cause the size effect, by experimenting with different regression methods, and whether the survivorship bias in the COMPUSTAT database induces the size effect. It is found that the size effect is highly significant for data from the earlier time period, but its significance is noticeably reduced for the later time period. Extreme returns cannot fully account for the size effect, because the effect remains strong in the earlier time period even when the extreme observations are trimmed. Finally, we do not find any evidence indicating that the survivorship bias in the COMPUSTAT database is responsible for the size effect.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
规模效应的一致性:时间周期、回归方法和数据库选择
我们试图通过不同的时间段、回归方法和数据库选择来重新审视这个问题,从而调和先前规模效应研究的结果。通过不同回归方法的实验,我们检验了规模效应是否随时间而变化,极端观测是否会导致规模效应,以及COMPUSTAT数据库中的生存偏差是否会诱导规模效应。我们发现,规模效应对于前期数据非常显著,但对于后期数据,其显著性明显降低。极端收益不能完全解释规模效应,因为即使在极端观察值被剔除后,该效应在较早时期仍然很强。最后,我们没有发现任何证据表明COMPUSTAT数据库中的生存偏差是造成规模效应的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Intelligent Authorization Agent Model in Grid Backing up Truck Control Automatically Based on LOS Study on Generation Companies' Bidding Strategy Based on Hybrid Intelligent Method Sentence Features Fusion for Text Summarization Using Fuzzy Logic Available Bandwidth Estimation in IEEE 802.11 Ad Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1