A real-time fall detection system using a wearable gait analysis sensor and a Support Vector Machine (SVM) classifier

N. Shibuya, B. T. Nukala, Amanda Rodriguez, J. Tsay, Tam Q. Nguyen, S. Zupancic, D. Lie
{"title":"A real-time fall detection system using a wearable gait analysis sensor and a Support Vector Machine (SVM) classifier","authors":"N. Shibuya, B. T. Nukala, Amanda Rodriguez, J. Tsay, Tam Q. Nguyen, S. Zupancic, D. Lie","doi":"10.1109/ICMU.2015.7061032","DOIUrl":null,"url":null,"abstract":"In this study, we report a custom designed wireless gait analysis sensor (WGAS) system for real-time fall detection using a Support Vector Machine (SVM) classifier. Our WGAS includes a tri-axial accelerometer, 2 gyroscopes and a MSP430 micro-controller. It was worn by the subjects at either the T4 or at the waist level for various intentional falls, Activities of Daily Living (ADL) and the Dynamic Gait Index (DGI) test. The raw data of tri-axial acceleration and angular velocity is wirelessly transmitted from the WGAS to a nearby PC, and then 6 features were extracted for fall classification using a SVM (Support Vector Machine) classifier. We achieved 98.8% and 98.7% fall classification accuracies from the data at the T4 and belt positions, respectively. Moreover, the preliminary data demonstrates an impressive overall specificity of 99.5% and an overall sensitivity of 97.0% for this WGAS real-time fall detection system.","PeriodicalId":251023,"journal":{"name":"2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMU.2015.7061032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

Abstract

In this study, we report a custom designed wireless gait analysis sensor (WGAS) system for real-time fall detection using a Support Vector Machine (SVM) classifier. Our WGAS includes a tri-axial accelerometer, 2 gyroscopes and a MSP430 micro-controller. It was worn by the subjects at either the T4 or at the waist level for various intentional falls, Activities of Daily Living (ADL) and the Dynamic Gait Index (DGI) test. The raw data of tri-axial acceleration and angular velocity is wirelessly transmitted from the WGAS to a nearby PC, and then 6 features were extracted for fall classification using a SVM (Support Vector Machine) classifier. We achieved 98.8% and 98.7% fall classification accuracies from the data at the T4 and belt positions, respectively. Moreover, the preliminary data demonstrates an impressive overall specificity of 99.5% and an overall sensitivity of 97.0% for this WGAS real-time fall detection system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可穿戴步态分析传感器和支持向量机分类器的实时跌倒检测系统
在这项研究中,我们报告了一个定制的无线步态分析传感器(WGAS)系统,该系统使用支持向量机(SVM)分类器进行实时跌倒检测。我们的WGAS包括一个三轴加速度计,2个陀螺仪和一个MSP430微控制器。受试者在T4或腰部佩戴,进行各种故意跌倒、日常生活活动(ADL)和动态步态指数(DGI)测试。三轴加速度和角速度的原始数据从WGAS无线传输到附近的PC机,然后提取6个特征,使用SVM(支持向量机)分类器进行跌倒分类。我们从T4和带位置的数据中分别获得了98.8%和98.7%的跌落分类准确率。此外,初步数据显示,该WGAS实时跌倒检测系统的总体特异性为99.5%,总体灵敏度为97.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Climate condition that mostly affects the change of tweet content Prototype development of “Integrative Education Environmental System using smart phone” and proposal of operational model Dynamic social influence modeling from perspective of gray-scale mixing process Exploring UX issues in Quantified Self technologies Passive user identification using sequential analysis of proximity information in touchscreen usage patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1