Detecting complex events in user-generated video using concept classifiers

Jinlin Guo, David Scott, F. Hopfgartner, C. Gurrin
{"title":"Detecting complex events in user-generated video using concept classifiers","authors":"Jinlin Guo, David Scott, F. Hopfgartner, C. Gurrin","doi":"10.1109/CBMI.2012.6269799","DOIUrl":null,"url":null,"abstract":"Automatic detection of complex events in user-generated videos (UGV) is a challenging task due to its new characteristics differing from broadcast video. In this work, we firstly summarize the new characteristics of UGV, and then explore how to utilize concept classifiers to recognize complex events in UGV content. The method starts from manually selecting a variety of relevant concepts, followed by constructing classifiers for these concepts. Finally, complex event detectors are learned by using the concatenated probabilistic scores of these concept classifiers as features. Further, we also compare three different fusion operations of probabilistic scores, namely Maximum, Average and Minimum fusion. Experimental results suggest that our method provides promising results. It also shows that Maximum fusion tends to give better performance for most complex events.","PeriodicalId":120769,"journal":{"name":"2012 10th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 10th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2012.6269799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Automatic detection of complex events in user-generated videos (UGV) is a challenging task due to its new characteristics differing from broadcast video. In this work, we firstly summarize the new characteristics of UGV, and then explore how to utilize concept classifiers to recognize complex events in UGV content. The method starts from manually selecting a variety of relevant concepts, followed by constructing classifiers for these concepts. Finally, complex event detectors are learned by using the concatenated probabilistic scores of these concept classifiers as features. Further, we also compare three different fusion operations of probabilistic scores, namely Maximum, Average and Minimum fusion. Experimental results suggest that our method provides promising results. It also shows that Maximum fusion tends to give better performance for most complex events.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用概念分类器检测用户生成视频中的复杂事件
用户生成视频(UGV)具有不同于广播视频的新特点,因此复杂事件的自动检测是一项具有挑战性的任务。在本文中,我们首先总结了UGV的新特征,然后探讨了如何利用概念分类器识别UGV内容中的复杂事件。该方法从手动选择各种相关概念开始,然后为这些概念构建分类器。最后,通过使用这些概念分类器的串联概率分数作为特征来学习复杂事件检测器。此外,我们还比较了三种不同的融合操作的概率得分,即最大,平均和最小融合。实验结果表明,该方法具有较好的效果。它还表明,对于大多数复杂事件,最大融合倾向于提供更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Water flow detection from a wearable device with a new feature, the spectral cover Comparing segmentation strategies for efficient video passage retrieval Audio and video cues for geo-tagging online videos in the absence of metadata Data pre-processing to improve SVM video classification Analyzing the behavior of professional video searchers using RAI query logs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1