Efficient tree-structured categorical retrieval

D. Belazzougui, G. Kucherov
{"title":"Efficient tree-structured categorical retrieval","authors":"D. Belazzougui, G. Kucherov","doi":"10.4230/LIPIcs.CPM.2020.4","DOIUrl":null,"url":null,"abstract":"We study a document retrieval problem in the new framework where $D$ text documents are organized in a {\\em category tree} with a pre-defined number $h$ of categories. This situation occurs e.g. with taxomonic trees in biology or subject classification systems for scientific literature. Given a string pattern $p$ and a category (level in the category tree), we wish to efficiently retrieve the $t$ \\emph{categorical units} containing this pattern and belonging to the category. We propose several efficient solutions for this problem. One of them uses $n(\\log\\sigma(1+o(1))+\\log D+O(h)) + O(\\Delta)$ bits of space and $O(|p|+t)$ query time, where $n$ is the total length of the documents, $\\sigma$ the size of the alphabet used in the documents and $\\Delta$ is the total number of nodes in the category tree. Another solution uses $n(\\log\\sigma(1+o(1))+O(\\log D))+O(\\Delta)+O(D\\log n)$ bits of space and $O(|p|+t\\log D)$ query time. We finally propose other solutions which are more space-efficient at the expense of a slight increase in query time.","PeriodicalId":236737,"journal":{"name":"Annual Symposium on Combinatorial Pattern Matching","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium on Combinatorial Pattern Matching","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CPM.2020.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a document retrieval problem in the new framework where $D$ text documents are organized in a {\em category tree} with a pre-defined number $h$ of categories. This situation occurs e.g. with taxomonic trees in biology or subject classification systems for scientific literature. Given a string pattern $p$ and a category (level in the category tree), we wish to efficiently retrieve the $t$ \emph{categorical units} containing this pattern and belonging to the category. We propose several efficient solutions for this problem. One of them uses $n(\log\sigma(1+o(1))+\log D+O(h)) + O(\Delta)$ bits of space and $O(|p|+t)$ query time, where $n$ is the total length of the documents, $\sigma$ the size of the alphabet used in the documents and $\Delta$ is the total number of nodes in the category tree. Another solution uses $n(\log\sigma(1+o(1))+O(\log D))+O(\Delta)+O(D\log n)$ bits of space and $O(|p|+t\log D)$ query time. We finally propose other solutions which are more space-efficient at the expense of a slight increase in query time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效的树结构分类检索
我们在新框架中研究了一个文档检索问题,其中$D$文本文档被组织在具有预定义数量{\em}$h$的中。这种情况发生在生物学的分类树或科学文献的主题分类系统中。给定一个字符串模式$p$和一个类别(类别树中的级别),我们希望有效地检索包含此模式并属于该类别的$t$\emph{分类单元}。我们针对这个问题提出了几种有效的解决办法。其中一个使用$n(\log\sigma(1+o(1))+\log D+O(h)) + O(\Delta)$位空间和$O(|p|+t)$查询时间,其中$n$是文档的总长度,$\sigma$是文档中使用的字母表的大小,$\Delta$是类别树中的节点总数。另一个解决方案使用$n(\log\sigma(1+o(1))+O(\log D))+O(\Delta)+O(D\log n)$位空间和$O(|p|+t\log D)$查询时间。最后,我们提出了其他的解决方案,这些解决方案以略微增加查询时间为代价,提高了空间效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal LZ-End Parsing is Hard From Bit-Parallelism to Quantum String Matching for Labelled Graphs Order-Preserving Squares in Strings Sliding Window String Indexing in Streams Parameterized Algorithms for String Matching to DAGs: Funnels and Beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1