Integrating Boundary Cue with Superpixel for Image Segmentation

Linjia Sun, Xiaohui Liang
{"title":"Integrating Boundary Cue with Superpixel for Image Segmentation","authors":"Linjia Sun, Xiaohui Liang","doi":"10.1109/ICIG.2011.145","DOIUrl":null,"url":null,"abstract":"This paper researches image segmentation as a global optimization problem and proposes a new way, which is called super pixel status model, to integrate boundary and region cue. Super pixel status model is a label model which describes the joint distribution of boundary and region classification in a bayesian framework. For organizing a boundary classifier, the contour of super pixel is decomposed into multiple line segments, and a robust line descriptor is presented to form line feature vector. Finally, an objective function is defined to assemble all super pixels statuses across the entire image for segmentation. Experiments and results show that the effectiveness of our approach.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper researches image segmentation as a global optimization problem and proposes a new way, which is called super pixel status model, to integrate boundary and region cue. Super pixel status model is a label model which describes the joint distribution of boundary and region classification in a bayesian framework. For organizing a boundary classifier, the contour of super pixel is decomposed into multiple line segments, and a robust line descriptor is presented to form line feature vector. Finally, an objective function is defined to assemble all super pixels statuses across the entire image for segmentation. Experiments and results show that the effectiveness of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合边界提示和超像素的图像分割
本文将图像分割作为全局优化问题进行研究,提出了一种融合边界和区域线索的新方法——超像素状态模型。超像素状态模型是在贝叶斯框架下描述边界和区域分类联合分布的标签模型。为了组织边界分类器,将超像素轮廓分解为多个线段,并提出鲁棒的线描述子来形成线特征向量。最后,定义一个目标函数来集合整个图像的所有超像素状态进行分割。实验和结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Face Recognition by Sparse Local Features from a Single Image under Occlusion LIDAR-based Long Range Road Intersection Detection A Novel Algorithm for Ship Detection Based on Dynamic Fusion Model of Multi-feature and Support Vector Machine Target Tracking Based on Wavelet Features in the Dynamic Image Sequence Visual Word Pairs for Similar Image Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1