An Improved Differential Evolution Algorithm for Solving Constrained Optimization Problems

Yuelin Gao, Jun-min Liu
{"title":"An Improved Differential Evolution Algorithm for Solving Constrained Optimization Problems","authors":"Yuelin Gao, Jun-min Liu","doi":"10.1109/CSO.2011.76","DOIUrl":null,"url":null,"abstract":"This article presents an improved differential evolution algorithm for solving constrained optimization problems. In the algorithm, the dynamically relaxing the constraint violation tolerance is given to balance the global search ability and the local search ability and to dynamically guide the individuals to tend to the feasible region. In addition, a new returning technique is used to ensure that the mutated individuals are all in the search space. It is shown by the numerical results that the proposed algorithm is effective and robust and has good global optimization ability.","PeriodicalId":210815,"journal":{"name":"2011 Fourth International Joint Conference on Computational Sciences and Optimization","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Joint Conference on Computational Sciences and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2011.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents an improved differential evolution algorithm for solving constrained optimization problems. In the algorithm, the dynamically relaxing the constraint violation tolerance is given to balance the global search ability and the local search ability and to dynamically guide the individuals to tend to the feasible region. In addition, a new returning technique is used to ensure that the mutated individuals are all in the search space. It is shown by the numerical results that the proposed algorithm is effective and robust and has good global optimization ability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求解约束优化问题的改进差分进化算法
本文提出了一种求解约束优化问题的改进差分进化算法。该算法通过动态放宽约束违例容忍度,平衡全局搜索能力和局部搜索能力,动态引导个体向可行区域移动。此外,还采用了一种新的返回技术,以确保突变个体都在搜索空间中。数值结果表明,该算法具有良好的全局寻优能力和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Inverse Eigenvalue Problem for a Special Kind of Matrices A Nonlinear Artificial Intelligence Ensemble Prediction Model Based on EOF for Typhoon Track Product Review Information Extraction Based on Adjective Opinion Words The Design and Implement of Meteorological Service Benefit Assessment for Huaihe River Basin with GIS Technology The Effects of Interest Rate Regulation on Real Estate Prices in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1