Agent Learning and Autoregressive Modeling

J. Gibson
{"title":"Agent Learning and Autoregressive Modeling","authors":"J. Gibson","doi":"10.1109/ITA50056.2020.9244971","DOIUrl":null,"url":null,"abstract":"Relative entropy is used to investigate whether a sequence is memoryless or has memory and to discern the presence of any structure in the sequence. Particular emphasis is placed on obtaining expressions for finite sequence length N and autoregressive sequences with known and unknown autocorrelations. We relate our results to the terms entropy gain, information gain, and redundancy as defined in agent learning studies, and show that these terms can be bounded using the mean squared error due to linear prediction of a stationary sequence.","PeriodicalId":137257,"journal":{"name":"2020 Information Theory and Applications Workshop (ITA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA50056.2020.9244971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Relative entropy is used to investigate whether a sequence is memoryless or has memory and to discern the presence of any structure in the sequence. Particular emphasis is placed on obtaining expressions for finite sequence length N and autoregressive sequences with known and unknown autocorrelations. We relate our results to the terms entropy gain, information gain, and redundancy as defined in agent learning studies, and show that these terms can be bounded using the mean squared error due to linear prediction of a stationary sequence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能体学习与自回归建模
相对熵用于研究序列是无记忆的还是有记忆的,并用于识别序列中任何结构的存在。特别强调的是获得有限序列长度N和具有已知和未知自相关的自回归序列的表达式。我们将我们的结果与智能体学习研究中定义的术语熵增益、信息增益和冗余联系起来,并表明这些术语可以使用由于平稳序列的线性预测而产生的均方误差有界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO is Very Useful for Pilot-Free Uplink Communications Simplified Ray Tracing for the Millimeter Wave Channel: A Performance Evaluation On Marton's Achievable Region: Local Tensorization for Product Channels with a Binary Component Improve Robustness of Deep Neural Networks by Coding On Nonnegative CP Tensor Decomposition Robustness to Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1