Embedded neuromorphic attention model leveraging a novel low-power heterogeneous platform

Amélie Gruel, Alfio Di Mauro, Robin Hunziker, L. Benini, Jean Martinet, M. Magno
{"title":"Embedded neuromorphic attention model leveraging a novel low-power heterogeneous platform","authors":"Amélie Gruel, Alfio Di Mauro, Robin Hunziker, L. Benini, Jean Martinet, M. Magno","doi":"10.1109/AICAS57966.2023.10168603","DOIUrl":null,"url":null,"abstract":"Neuromorphic computing has been identified as an ideal candidate to exploit the potential of event-based cameras, a promising sensor for embedded computer vision. However, state-of-the-art neuromorphic models try to maximize the model performance on large platforms rather than a trade-off between memory requirements and performance. We present the first deployment of an embedded neuromorphic algorithm on Kraken, a low-power RISC-V-based SoC prototype including a neuromorphic spiking neural network (SNN) accelerator. In addition, the model employed in this paper was designed to achieve visual attention detection on event data while minimizing the neuronal populations’ size and the inference latency. Experimental results show that it is possible to achieve saliency detection in event data with a delay of 32ms, maintains classification accuracy of 84.51% and consumes only 3.85mJ per second of processed input data, achieving all of this while processing input data 10 times faster than real-time. This trade-off between decision latency, power consumption, accuracy, and run time significantly outperforms those achieved by previous implementations on CPU and neuromorphic hardware.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neuromorphic computing has been identified as an ideal candidate to exploit the potential of event-based cameras, a promising sensor for embedded computer vision. However, state-of-the-art neuromorphic models try to maximize the model performance on large platforms rather than a trade-off between memory requirements and performance. We present the first deployment of an embedded neuromorphic algorithm on Kraken, a low-power RISC-V-based SoC prototype including a neuromorphic spiking neural network (SNN) accelerator. In addition, the model employed in this paper was designed to achieve visual attention detection on event data while minimizing the neuronal populations’ size and the inference latency. Experimental results show that it is possible to achieve saliency detection in event data with a delay of 32ms, maintains classification accuracy of 84.51% and consumes only 3.85mJ per second of processed input data, achieving all of this while processing input data 10 times faster than real-time. This trade-off between decision latency, power consumption, accuracy, and run time significantly outperforms those achieved by previous implementations on CPU and neuromorphic hardware.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于新型低功耗异构平台的嵌入式神经形态注意模型
神经形态计算已被确定为开发基于事件的相机潜力的理想候选者,这是一种有前途的嵌入式计算机视觉传感器。然而,最先进的神经形态模型试图在大型平台上最大化模型性能,而不是在内存需求和性能之间进行权衡。我们首次在Kraken上部署了嵌入式神经形态算法,Kraken是一个低功耗的基于risc - v的SoC原型,包括一个神经形态峰值神经网络(SNN)加速器。此外,本文所采用的模型旨在实现对事件数据的视觉注意检测,同时最小化神经元群体的大小和推理延迟。实验结果表明,可以在延迟32ms的情况下实现对事件数据的显著性检测,保持84.51%的分类准确率,处理输入数据时仅消耗3.85mJ / s,在处理输入数据速度比实时快10倍的情况下实现这一切。这种在决策延迟、功耗、准确性和运行时间之间的权衡,明显优于以前在CPU和神经形态硬件上实现的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synaptic metaplasticity with multi-level memristive devices Unsupervised Learning of Spike-Timing-Dependent Plasticity Based on a Neuromorphic Implementation A Fully Differential 4-Bit Analog Compute-In-Memory Architecture for Inference Application Convergent Waveform Relaxation Schemes for the Transient Analysis of Associative ReLU Arrays Performance Assessment of an Extremely Energy-Efficient Binary Neural Network Using Adiabatic Superconductor Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1