Hybrid programming and multiple GPUs implementation for Particle-In-Cell

E. Krishnasamy, I. Vasileska, L. Kos, P. Bouvry
{"title":"Hybrid programming and multiple GPUs implementation for Particle-In-Cell","authors":"E. Krishnasamy, I. Vasileska, L. Kos, P. Bouvry","doi":"10.1109/ICCCS57501.2023.10150523","DOIUrl":null,"url":null,"abstract":"Numerical modelling in fusion physics is crucial for studying fusion devices, space, and astrophysical systems. The plasma simulations of fusion devices demand a kinetic approach to handle extreme nonlinearities methods. One of the most used plasma kinetic simulation codes is the Particle-In-Cell (PIC). The HPC systems worldwide are getting more powerful with the combination of CPU, GPU, and other accelerators (e.g., FPGAs and Quantum Processors). Moreover, we can already notice that several exascale machines are operational worldwide; one typical example is the Frontier (Oak Ridge National Laboratory) exascale machine. In parallel, the same effort is being made for scientific algorithms to use robust HPC systems efficiently. Many programming frameworks (e.g., OpenACC, OpenMP offloading, and SYCL) mainly offer excellent support portability to the existing scientific codes to use the exascale HPC systems. This work demonstrates hybrid and multiple GPUs capabilities (or portability) for Simple Particle-In-Cell (SIMPIC) based on the PIC algorithm. First, we have implemented the hybrid (MPI+OpenMP) portability and multiple GPUs (multiple node GPU with the help of MPI) offloading portability. The first implementation gains a speed up to 40% compared to the plain MPI version, and the second implementation achieves up to 40% speedups compared to the hybrid (MPI+OpenMP) implementation.","PeriodicalId":266168,"journal":{"name":"2023 8th International Conference on Computer and Communication Systems (ICCCS)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS57501.2023.10150523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical modelling in fusion physics is crucial for studying fusion devices, space, and astrophysical systems. The plasma simulations of fusion devices demand a kinetic approach to handle extreme nonlinearities methods. One of the most used plasma kinetic simulation codes is the Particle-In-Cell (PIC). The HPC systems worldwide are getting more powerful with the combination of CPU, GPU, and other accelerators (e.g., FPGAs and Quantum Processors). Moreover, we can already notice that several exascale machines are operational worldwide; one typical example is the Frontier (Oak Ridge National Laboratory) exascale machine. In parallel, the same effort is being made for scientific algorithms to use robust HPC systems efficiently. Many programming frameworks (e.g., OpenACC, OpenMP offloading, and SYCL) mainly offer excellent support portability to the existing scientific codes to use the exascale HPC systems. This work demonstrates hybrid and multiple GPUs capabilities (or portability) for Simple Particle-In-Cell (SIMPIC) based on the PIC algorithm. First, we have implemented the hybrid (MPI+OpenMP) portability and multiple GPUs (multiple node GPU with the help of MPI) offloading portability. The first implementation gains a speed up to 40% compared to the plain MPI version, and the second implementation achieves up to 40% speedups compared to the hybrid (MPI+OpenMP) implementation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粒子单元的混合编程和多gpu实现
核聚变物理中的数值模拟对于研究核聚变装置、空间和天体物理系统至关重要。聚变装置的等离子体模拟需要动力学方法来处理极端非线性方法。其中最常用的等离子体动力学模拟代码是粒子池(PIC)。随着CPU、GPU和其他加速器(如fpga和量子处理器)的结合,世界范围内的高性能计算系统正变得越来越强大。此外,我们已经注意到,有几台百亿亿次的机器在世界范围内运行;一个典型的例子是Frontier(橡树岭国家实验室)百亿亿次计算机。与此同时,科学算法也在做出同样的努力,以有效地使用强大的高性能计算系统。许多编程框架(例如,OpenACC、OpenMP卸载和SYCL)主要为现有的科学代码提供出色的可移植性支持,以使用exascale HPC系统。这项工作展示了基于PIC算法的简单粒子单元(SIMPIC)的混合和多个gpu功能(或可移植性)。首先,我们实现了混合(MPI+OpenMP)可移植性和多GPU (MPI帮助下的多节点GPU)卸载可移植性。与普通MPI版本相比,第一个实现的速度提高了40%,第二个实现的速度比混合(MPI+OpenMP)实现的速度提高了40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatial-Temporal Multimodal End-to-End Autonomous Driving Research on Secret Sharing for Cyberspace Mimic Defense Electromagnetic Energy Theorems and the Energy-Viewpoint-Based Modal Analysis Theories Design and Research of the Whole Process Non-blocking Technology in High Concurrency Scenario Electromagnetic Modal Analysis for Multiple- Ports-Fed Antenna Array: From Waveguide-Array Integrative Analysis to Amplitude-Phase Factor Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1