Frequency domain multi-channel expectation maximization algorithm for audio background noise reduction

Jichi Deng, S. Godsill
{"title":"Frequency domain multi-channel expectation maximization algorithm for audio background noise reduction","authors":"Jichi Deng, S. Godsill","doi":"10.1109/WASPAA.2013.6701859","DOIUrl":null,"url":null,"abstract":"In this paper we implement expectation maximization (EM) based methods in the short time Fourier transform (STFT) domain for background noise reduction in multi-channel systems. The models introduce a Wishart prior for the unknown signal covariance matrix. An EM algorithm is used to maximise the posterior probability for the clean signal, approaching a stationary point of the distribution with increasing iterations. The background noise is modelled as white and stationary in this initial work. The proposed methods are found to outperform a multi-channel Wiener filter in terms of residual noise artefacts and MSE for a small initial trial.","PeriodicalId":341888,"journal":{"name":"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASPAA.2013.6701859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we implement expectation maximization (EM) based methods in the short time Fourier transform (STFT) domain for background noise reduction in multi-channel systems. The models introduce a Wishart prior for the unknown signal covariance matrix. An EM algorithm is used to maximise the posterior probability for the clean signal, approaching a stationary point of the distribution with increasing iterations. The background noise is modelled as white and stationary in this initial work. The proposed methods are found to outperform a multi-channel Wiener filter in terms of residual noise artefacts and MSE for a small initial trial.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
音频背景噪声降噪的频域多通道期望最大化算法
本文在短时傅里叶变换(STFT)域实现了基于期望最大化(EM)的多通道系统背景噪声抑制方法。该模型对未知信号协方差矩阵引入了Wishart先验。EM算法用于最大化干净信号的后验概率,随着迭代次数的增加接近分布的平稳点。在最初的工作中,背景噪声被建模为白色和静止的。在一个小的初始试验中,发现所提出的方法在残余噪声伪像和MSE方面优于多通道维纳滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using articulation index band correlations to objectively estimate speech intelligibility consistent with the modified rhyme test Roomprints for forensic audio applications The geometry of sound-source localization using non-coplanar microphone arrays Sparse representation and epoch estimation of voiced speech Spotforming using distributed microphone arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1