Gustavo Bennemann de Moura, Valéria Delisandra Feltrim
{"title":"Using LSTM Encoder-Decoder for Rhetorical Structure Prediction","authors":"Gustavo Bennemann de Moura, Valéria Delisandra Feltrim","doi":"10.1109/bracis.2018.00055","DOIUrl":null,"url":null,"abstract":"The importance of identifying rhetorical categories in texts has been widely acknowledged in the literature, since information regarding text organization or structure can be applied in a variety of scenarios, including genre-specific writing support and evaluation, both manually and automatically. In this paper we present a Long Short-Term Memory (LSTM) encoder-decoder classifier for scientific abstracts. As a large corpus of annotated abstracts was required to train our classifier, we built a corpus using abstracts extracted from PUBMED/MEDLINE. Using the proposed classifier we achieved approximately 3% improvement in per-abstract accuracy over the baselines and 1% improvement for both per-sentence accuracy and f1-score.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/bracis.2018.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The importance of identifying rhetorical categories in texts has been widely acknowledged in the literature, since information regarding text organization or structure can be applied in a variety of scenarios, including genre-specific writing support and evaluation, both manually and automatically. In this paper we present a Long Short-Term Memory (LSTM) encoder-decoder classifier for scientific abstracts. As a large corpus of annotated abstracts was required to train our classifier, we built a corpus using abstracts extracted from PUBMED/MEDLINE. Using the proposed classifier we achieved approximately 3% improvement in per-abstract accuracy over the baselines and 1% improvement for both per-sentence accuracy and f1-score.