Accelerating space traversal methods for explicit model predictive control via space partitioning trees

M. Jafargholi, Helfried Peyrl, A. Zanarini, M. Herceg, S. Mariéthoz
{"title":"Accelerating space traversal methods for explicit model predictive control via space partitioning trees","authors":"M. Jafargholi, Helfried Peyrl, A. Zanarini, M. Herceg, S. Mariéthoz","doi":"10.1109/ECC.2014.6862213","DOIUrl":null,"url":null,"abstract":"The paper elaborates an approach for acceleration of space traversal methods for solving a point location problem involved in the evaluation of explicit model predictive control laws. The idea is to improve the initialisation of the space traversal algorithms by providing initial estimates that restrict the search over a fraction of the original space. The reduction of the search space ensures that the space traversal algorithms can find the solution significantly faster as if sought over the full space. The proposed approach comprises two algorithms. The first algorithm generates an orthogonal partition of the search space off-line which is represented by a quadtree. In the second algorithm, the quadtree is traversed on-line and a particular space traversal method is initialised. The paper provides complexity analysis of both algorithms in the runtime and storage requirements. The approach is tested numerically on multiple examples and achieves significant reduction of iterations in the space traversal methods.","PeriodicalId":251538,"journal":{"name":"2014 European Control Conference (ECC)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECC.2014.6862213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The paper elaborates an approach for acceleration of space traversal methods for solving a point location problem involved in the evaluation of explicit model predictive control laws. The idea is to improve the initialisation of the space traversal algorithms by providing initial estimates that restrict the search over a fraction of the original space. The reduction of the search space ensures that the space traversal algorithms can find the solution significantly faster as if sought over the full space. The proposed approach comprises two algorithms. The first algorithm generates an orthogonal partition of the search space off-line which is represented by a quadtree. In the second algorithm, the quadtree is traversed on-line and a particular space traversal method is initialised. The paper provides complexity analysis of both algorithms in the runtime and storage requirements. The approach is tested numerically on multiple examples and achieves significant reduction of iterations in the space traversal methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于空间划分树的显式模型预测控制加速空间遍历方法
本文阐述了一种空间遍历加速方法,用于解决显式模型预测控制律评估中涉及的点定位问题。其思想是通过提供初始估计来改进空间遍历算法的初始化,从而将搜索限制在原始空间的一小部分。搜索空间的减少确保了空间遍历算法可以明显更快地找到解决方案,就像在整个空间中搜索一样。该方法包括两种算法。第一种算法生成离线搜索空间的正交分区,该分区用四叉树表示。在第二种算法中,在线遍历四叉树并初始化特定的空间遍历方法。本文对两种算法在运行时和存储需求方面的复杂度进行了分析。在多个算例上对该方法进行了数值测试,结果表明该方法显著减少了空间遍历方法的迭代次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robustness under saturated feedback: Strong iISS for a class of nonlinear systems Least squares end performance experiment design in multicarrier systems: The sparse preamble case Multi-model, multi-objective tuning of fixed-structure controllers Control systems on three-dimensional lie groups On solving periodic ℋ2-optimal fault detection and isolation problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1