Meta-model based knowledge discovery

Dominic Girardi, J. Dirnberger, M. Giretzlehner
{"title":"Meta-model based knowledge discovery","authors":"Dominic Girardi, J. Dirnberger, M. Giretzlehner","doi":"10.1109/ICDKE.2011.6053918","DOIUrl":null,"url":null,"abstract":"Data acquisition and data mining are often seen as two independent processes in research. We introduce a meta-information based, highly generic data acquisition system which is able to store data of almost arbitrary structure. Based on the meta-information we plan to apply data mining algorithms for knowledge retrieval. Furthermore, the results from the data mining algorithms will be used to apply plausibility checks for the subsequent data acquisition, in order to maintain the quality of the collected data. So, the gap between data acquisition and data mining shall be decreased.","PeriodicalId":377148,"journal":{"name":"2011 International Conference on Data and Knowledge Engineering (ICDKE)","volume":"247 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Data and Knowledge Engineering (ICDKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDKE.2011.6053918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Data acquisition and data mining are often seen as two independent processes in research. We introduce a meta-information based, highly generic data acquisition system which is able to store data of almost arbitrary structure. Based on the meta-information we plan to apply data mining algorithms for knowledge retrieval. Furthermore, the results from the data mining algorithms will be used to apply plausibility checks for the subsequent data acquisition, in order to maintain the quality of the collected data. So, the gap between data acquisition and data mining shall be decreased.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于元模型的知识发现
在研究中,数据采集和数据挖掘通常被视为两个独立的过程。我们介绍了一个基于元信息的、高度通用的数据采集系统,它能够存储几乎任意结构的数据。基于元信息,我们计划应用数据挖掘算法进行知识检索。此外,数据挖掘算法的结果将用于对后续数据采集进行合理性检查,以保持所收集数据的质量。因此,需要缩小数据采集与数据挖掘之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
rsLDA: A Bayesian hierarchical model for relational learning Multi-level continuous skyline queries (MCSQ) Dealing with domain knowledge in association rules mining — Several experiments A purpose based usage access control model for E-healthcare services Building a distributed authenticating CDN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1