OpenMP Implementation of Parallel Longest Common Subsequence Algorithm for Mathematical Expression Retrieval

Pavan Kumar Perepu
{"title":"OpenMP Implementation of Parallel Longest Common Subsequence Algorithm for Mathematical Expression Retrieval","authors":"Pavan Kumar Perepu","doi":"10.1142/S0129626421500079","DOIUrl":null,"url":null,"abstract":"Given a mathematical expression in LaTeX or MathML format, retrieval algorithm extracts similar expressions from a database. In our previous work, we have used Longest Common Subsequence (LCS) algorithm to match two expressions of lengths, [Formula: see text] and [Formula: see text], which takes [Formula: see text] time complexity. If there are [Formula: see text] database expressions, total complexity is [Formula: see text], and an increase in [Formula: see text] also increases this complexity. In the present work, we propose to use parallel LCS algorithm in our retrieval process. Parallel LCS has [Formula: see text] time complexity with [Formula: see text] processors and total complexity can be reduced to [Formula: see text]. For our experimentation, OpenMP based implementation has been used on Intel [Formula: see text] processor with 4 cores. However, for smaller expressions, parallel version takes more time as the implementation overhead dominates the algorithmic improvement. As such, we have proposed to use parallel version, selectively, only on larger expressions, in our retrieval algorithm to achieve better performance. We have compared the sequential and parallel versions of our ME retrieval algorithm, and the performance results have been reported on a database of 829 mathematical expressions.","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129626421500079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Given a mathematical expression in LaTeX or MathML format, retrieval algorithm extracts similar expressions from a database. In our previous work, we have used Longest Common Subsequence (LCS) algorithm to match two expressions of lengths, [Formula: see text] and [Formula: see text], which takes [Formula: see text] time complexity. If there are [Formula: see text] database expressions, total complexity is [Formula: see text], and an increase in [Formula: see text] also increases this complexity. In the present work, we propose to use parallel LCS algorithm in our retrieval process. Parallel LCS has [Formula: see text] time complexity with [Formula: see text] processors and total complexity can be reduced to [Formula: see text]. For our experimentation, OpenMP based implementation has been used on Intel [Formula: see text] processor with 4 cores. However, for smaller expressions, parallel version takes more time as the implementation overhead dominates the algorithmic improvement. As such, we have proposed to use parallel version, selectively, only on larger expressions, in our retrieval algorithm to achieve better performance. We have compared the sequential and parallel versions of our ME retrieval algorithm, and the performance results have been reported on a database of 829 mathematical expressions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数学表达式检索并行最长公共子序列算法的OpenMP实现
给定LaTeX或MathML格式的数学表达式,检索算法从数据库中提取类似的表达式。在我们之前的工作中,我们使用了LCS算法来匹配两个长度表达式,[Formula: see text]和[Formula: see text],这需要[Formula: see text]的时间复杂度。如果存在[Formula: see text]数据库表达式,则总复杂度为[Formula: see text],并且[Formula: see text]的增加也会增加该复杂度。在目前的工作中,我们建议在我们的检索过程中使用并行LCS算法。并行LCS具有[公式:参见文本]处理器的时间复杂度,并且总复杂度可以降低到[公式:参见文本]。在我们的实验中,基于OpenMP的实现已经在Intel 4核处理器上使用。然而,对于较小的表达式,并行版本需要更多的时间,因为实现开销占算法改进的主导地位。因此,我们建议在检索算法中选择性地只对较大的表达式使用并行版本,以获得更好的性能。我们比较了我们的ME检索算法的顺序和并行版本,并在一个包含829个数学表达式的数据库上报告了性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Note to Non-adaptive Broadcasting Semi-Supervised Node Classification via Semi-Global Graph Transformer Based on Homogeneity Augmentation 4-Free Strong Digraphs with the Maximum Size Relation-aware Graph Contrastive Learning The Normalized Laplacian Spectrum of Folded Hypercube with Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1