A miniature microclimate thermal flow sensor for horticultural applications

D. Alveringh, Daniël G. Bijsterveld, T. E. V. D. Berg, H. Veltkamp, K. M. Batenburg, R. Sanders, J. Lötters, R. Wiegerink
{"title":"A miniature microclimate thermal flow sensor for horticultural applications","authors":"D. Alveringh, Daniël G. Bijsterveld, T. E. V. D. Berg, H. Veltkamp, K. M. Batenburg, R. Sanders, J. Lötters, R. Wiegerink","doi":"10.1109/SENSORS52175.2022.9967348","DOIUrl":null,"url":null,"abstract":"Closely packed plant canopies have a negative influence on the uniformity of conditioned air and therefore induce physiological disorders inside plant production systems. Real-time leaf-level flow measurements help to improve the microclimate. This application needs a small and low-cost flow sensor for a flow regime up to 1 m s−1. The chip that is presented in this paper consists of five suspended heavily p-doped silicon beams with resistors integrated in the tip. A fluid flow along these tips causes a temperature difference between the resistors by convective heat transfer, enabling calorimetric flow sensing. The 4.4 mm by 3.6 mm sensor is realized in a three-mask versatile fabrication process. The sensor shows a range of 1m s−1 to 3 m s−1 for air with a maximum sensitivity of 1.8 mV m−1 s and a standard deviation-based accuracy of 3.6 cm s−1. The sensor design is easily scalable in theory, hence, a redesign will be made with a slightly lower flow range to fully meet the requirements for the application.","PeriodicalId":120357,"journal":{"name":"2022 IEEE Sensors","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS52175.2022.9967348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Closely packed plant canopies have a negative influence on the uniformity of conditioned air and therefore induce physiological disorders inside plant production systems. Real-time leaf-level flow measurements help to improve the microclimate. This application needs a small and low-cost flow sensor for a flow regime up to 1 m s−1. The chip that is presented in this paper consists of five suspended heavily p-doped silicon beams with resistors integrated in the tip. A fluid flow along these tips causes a temperature difference between the resistors by convective heat transfer, enabling calorimetric flow sensing. The 4.4 mm by 3.6 mm sensor is realized in a three-mask versatile fabrication process. The sensor shows a range of 1m s−1 to 3 m s−1 for air with a maximum sensitivity of 1.8 mV m−1 s and a standard deviation-based accuracy of 3.6 cm s−1. The sensor design is easily scalable in theory, hence, a redesign will be made with a slightly lower flow range to fully meet the requirements for the application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于园艺应用的微型微气候热流传感器
密集的植物冠层会对调节空气的均匀性产生负面影响,从而导致植物生产系统内的生理失调。实时叶级流量测量有助于改善小气候。这种应用需要一个小而低成本的流量传感器,流量高达1 m s - 1。本文提出的芯片由五根悬浮的高掺磷硅梁组成,其尖端集成了电阻。沿着这些尖端流动的流体通过对流传热在电阻之间产生温度差,从而实现量热流量传感。4.4 mm × 3.6 mm的传感器采用三掩模通用制造工艺实现。该传感器对空气的测量范围为1m s−1至3m s−1,最大灵敏度为1.8 mV m−1 s,基于标准偏差的精度为3.6 cm s−1。理论上,传感器设计易于扩展,因此,将重新设计稍微降低流量范围,以完全满足应用要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-intrusive Water Flow Rate Measurement: A TEG-powered Ultrasonic Sensing Approach Design of optical inclinometer composed of a ball lens and viscosity fluid to improve focusing Fall Event Detection using Vision Transformer Porous Silicon-Based Microspectral Unit for Real-Time Moisture Detection in a Battery-less Smart Mask Twisted and Coiled Carbon Nanotube Yarn Muscle Embedding Ferritin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1