Association Rules and Machine Learning for Enhancing Undeclared Work Detection

Eleni Alogogianni, M. Virvou
{"title":"Association Rules and Machine Learning for Enhancing Undeclared Work Detection","authors":"Eleni Alogogianni, M. Virvou","doi":"10.1109/IISA50023.2020.9284414","DOIUrl":null,"url":null,"abstract":"Undeclared work is, by definition, a multi-faceted phenomenon that needs to be detected. In welfare states, undeclared work results in loss of public revenue and thus resources critical for welfare mechanisms’ funding, lack of worker protection and, last but not least, unfair competition for legitimate businesses. Yet, little to no studies have proposed the use of sophisticated machine learning methods in tackling this severe socioeconomic problem. In this study, we demonstrate the application of an advanced data analysis method, the association rule mining, which has significant advantages over rule-based systems, in classifying employers likely to engage in undeclared work. Indeed, the results of this pilot project proved divulging, even to the most experienced labour inspectors, offering insights in patterns of employers’ illegal behaviour, that were previously unidentified.","PeriodicalId":109238,"journal":{"name":"2020 11th International Conference on Information, Intelligence, Systems and Applications (IISA","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th International Conference on Information, Intelligence, Systems and Applications (IISA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA50023.2020.9284414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Undeclared work is, by definition, a multi-faceted phenomenon that needs to be detected. In welfare states, undeclared work results in loss of public revenue and thus resources critical for welfare mechanisms’ funding, lack of worker protection and, last but not least, unfair competition for legitimate businesses. Yet, little to no studies have proposed the use of sophisticated machine learning methods in tackling this severe socioeconomic problem. In this study, we demonstrate the application of an advanced data analysis method, the association rule mining, which has significant advantages over rule-based systems, in classifying employers likely to engage in undeclared work. Indeed, the results of this pilot project proved divulging, even to the most experienced labour inspectors, offering insights in patterns of employers’ illegal behaviour, that were previously unidentified.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强未申报工作检测的关联规则和机器学习
根据定义,未申报的工作是一个需要被发现的多方面的现象。在福利国家,未申报的工作导致公共收入的损失,从而导致对福利机制的资金至关重要的资源的损失,工人保护的缺乏,最后但并非最不重要的是,对合法企业的不公平竞争。然而,几乎没有研究提出使用复杂的机器学习方法来解决这一严重的社会经济问题。在本研究中,我们展示了一种先进的数据分析方法的应用,即关联规则挖掘,它比基于规则的系统具有显著的优势,可以对可能从事未申报工作的雇主进行分类。事实上,这个试点项目的结果证明,即使是对最有经验的劳工检查员来说,也提供了对以前未查明的雇主非法行为模式的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning Networks for Vectorized Energy Load Forecasting Analysis and Design of Services in Building Units in the context of a Smart City A ZigBee – based Lightweight Wireless Sensor System for measuring action potential bio signals in Agriculture IoT Applications Analyzing ROADM costs in SDM networks Excavations go mobile: A web-based mobile application for archaeological excavations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1