{"title":"Automatic classification of singing voice quality","authors":"B. Kostek, Pawel Zwan","doi":"10.1109/ISDA.2005.28","DOIUrl":null,"url":null,"abstract":"In the paper problems related to the classification of singing voice quality are presented. For this purpose a database consisting of singers' sample recordings is constructed and parameters are extracted from recorded voice of trained and untrained singers. The parameterization process is based on both voice source and formant analysis of a singing voice. These parameters are explained as to their physical interpretation and analyzed statistically in order to diminish their number. The statistical analysis is based on the Fisher statistic. In such a way a feature vector of a singing voice is formed. Decision systems based on neutral networks and rough sets are utilized in the context of the voice type and voice quality classification. Results obtained in the automatic classification performed by both decision systems are compared. A possibility to classify automatically type/quality of voice is judged. The methodology proposed provides means for discerning trained and untrained singers.","PeriodicalId":345842,"journal":{"name":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2005.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In the paper problems related to the classification of singing voice quality are presented. For this purpose a database consisting of singers' sample recordings is constructed and parameters are extracted from recorded voice of trained and untrained singers. The parameterization process is based on both voice source and formant analysis of a singing voice. These parameters are explained as to their physical interpretation and analyzed statistically in order to diminish their number. The statistical analysis is based on the Fisher statistic. In such a way a feature vector of a singing voice is formed. Decision systems based on neutral networks and rough sets are utilized in the context of the voice type and voice quality classification. Results obtained in the automatic classification performed by both decision systems are compared. A possibility to classify automatically type/quality of voice is judged. The methodology proposed provides means for discerning trained and untrained singers.