Blind separation of sources applied to convolutive mixtures in shallow water

M. Gaeta, F. Briolle, P. Esparcieux
{"title":"Blind separation of sources applied to convolutive mixtures in shallow water","authors":"M. Gaeta, F. Briolle, P. Esparcieux","doi":"10.1109/HOST.1997.613543","DOIUrl":null,"url":null,"abstract":"In underwater acoustics, the signal received by sensors is a mixture of different elementary sources, filtered by the environment. In blind separation of sources, we can isolate each source from different mixtures of sources without any a priori information, except for assuming statistical independence of the different sources. Jutten and Herault (1991) proposed a neuromimetic solution to the problem. In our work, we use this solution to separate convolutive mixtures of simulated complex underwater signals in a shallow water environment. To allow multipath identification a whitening step has to be introduced. We propose a local whitening procedure that does not impact the separated signal output and preserves the signal characteristics. This promising technique can be improved using non causal whitening filters more adapted to the target environment.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In underwater acoustics, the signal received by sensors is a mixture of different elementary sources, filtered by the environment. In blind separation of sources, we can isolate each source from different mixtures of sources without any a priori information, except for assuming statistical independence of the different sources. Jutten and Herault (1991) proposed a neuromimetic solution to the problem. In our work, we use this solution to separate convolutive mixtures of simulated complex underwater signals in a shallow water environment. To allow multipath identification a whitening step has to be introduced. We propose a local whitening procedure that does not impact the separated signal output and preserves the signal characteristics. This promising technique can be improved using non causal whitening filters more adapted to the target environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
浅水中卷积混合源的盲分离
在水下声学中,传感器接收到的信号是不同基本源的混合,经过环境过滤。在盲源分离中,除了假设不同源的统计独立性外,我们可以在没有任何先验信息的情况下从不同的源混合物中分离出每个源。Jutten和Herault(1991)提出了一种神经模拟的解决方案。在我们的工作中,我们使用该解决方案在浅水环境中分离模拟复杂水下信号的卷积混合物。为了允许多路径识别,必须引入一个白化步骤。我们提出了一种不影响分离信号输出并保持信号特征的局部白化方法。这种有前途的技术可以使用更适应目标环境的非因果美白滤波器来改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Narrow band source separation in wide band context applications to array signal processing Higher-order statistics for tissue characterization from ultrasound images An iterative mixed norm image restoration algorithm Comparison between asymmetric generalized Gaussian (AGG) and symmetric-/spl alpha/-stable (S/spl alpha/S) noise models for signal estimation in non Gaussian environments Linear algebraic approaches for (almost) periodic moving average system identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1