Dedicated wavelet QRS complex detection for FPGA implementation

Bo Zhang, L. Siéler, Y. Morère, B. Bolmont, G. Bourhis
{"title":"Dedicated wavelet QRS complex detection for FPGA implementation","authors":"Bo Zhang, L. Siéler, Y. Morère, B. Bolmont, G. Bourhis","doi":"10.1109/ATSIP.2017.8075543","DOIUrl":null,"url":null,"abstract":"The QRS complex is the most significant segment in the Electrocardiography (ECG) signal. By detecting its position, we can learn the physiological informations of the subjects, e.g. heart rate. In this paper, we propose a FPGA architecture for QRS complex detection. The detection algorithm is based on Integer Haar Transform (IHT). Due to its integer nature, the IHT avoids the floating point calculations and thus can be easily implemented in FPGA. The FPGA Cyclone EP3C5F256C6 is used as the target chip and all the components of the system are implemented in VHSIC Hardware Description Language (VHDL). The testing results show that the proposed FPGA architecture can achieve an efficient detection performance where the total detection accuracy exceeds 98%. Meanwhile, the FPGA implementation shows good design efficiency in the term of silicon consumption. Only 8% silicon resources of the target chip are occupied. The proposed architecture will be adopted as a core unit to make a FPGA system for stress recognition given the heterogeneous data.","PeriodicalId":259951,"journal":{"name":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2017.8075543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The QRS complex is the most significant segment in the Electrocardiography (ECG) signal. By detecting its position, we can learn the physiological informations of the subjects, e.g. heart rate. In this paper, we propose a FPGA architecture for QRS complex detection. The detection algorithm is based on Integer Haar Transform (IHT). Due to its integer nature, the IHT avoids the floating point calculations and thus can be easily implemented in FPGA. The FPGA Cyclone EP3C5F256C6 is used as the target chip and all the components of the system are implemented in VHSIC Hardware Description Language (VHDL). The testing results show that the proposed FPGA architecture can achieve an efficient detection performance where the total detection accuracy exceeds 98%. Meanwhile, the FPGA implementation shows good design efficiency in the term of silicon consumption. Only 8% silicon resources of the target chip are occupied. The proposed architecture will be adopted as a core unit to make a FPGA system for stress recognition given the heterogeneous data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
专用小波QRS复杂检测的FPGA实现
QRS复合体是心电图信号中最重要的一段。通过检测它的位置,我们可以了解受试者的生理信息,例如心率。在本文中,我们提出了一种QRS复杂检测的FPGA架构。检测算法基于整数哈尔变换(IHT)。由于其整数性质,IHT避免了浮点计算,因此可以很容易地在FPGA中实现。本系统以FPGA Cyclone EP3C5F256C6为目标芯片,采用VHSIC硬件描述语言(VHDL)实现了系统的各个组成部分。测试结果表明,所提出的FPGA架构能够实现高效的检测性能,总检测精度超过98%。同时,FPGA实现在硅消耗方面显示出良好的设计效率。仅占用目标芯片8%的硅资源。在异构数据环境下,本文提出的结构将作为核心单元,实现应力识别的FPGA系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Speckle noise reduction in digital speckle pattern interferometry using Riesz wavelets transform A new GLBSIF descriptor for face recognition in the uncontrolled environments Saliency attention and sift keypoints combination for automatic target recognition on MSTAR dataset A comparative study of interworking methods among differents rats in 5G context Diagnosis of osteoporosis disease from bone X-ray images with stacked sparse autoencoder and SVM classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1