Massively Parallel Implementation of a Fast Resource Efficient White Light Interferometry Algorithm

Tobias Scholz, M. Rosenberger, G. Notni
{"title":"Massively Parallel Implementation of a Fast Resource Efficient White Light Interferometry Algorithm","authors":"Tobias Scholz, M. Rosenberger, G. Notni","doi":"10.1109/DICTA.2018.8615828","DOIUrl":null,"url":null,"abstract":"In this paper an implementation of a massively parallel white light interferometry algorithm will be presented. In contrast to more common algorithms it not depends on the fast Fourier transform. Using non-equidistant sampling steps is supported and will occur after compression. The algorithm can be applied to variety of target hardware ranging from embedded implementations with limited resources up to desktop computers and higher. It was invented to use the massively parallel architecture of field-programmable gate arrays (FPGA). The approach was proven on the Xilinx Zynq architecture and an x86 high level language implementation. Major improvements compared to more common solutions was the ability to compress the raw data easily while keeping the accuracy despite the limited hardware resources available. Independent of the height of the raw image stack the reconstruction can be solved in constant time.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper an implementation of a massively parallel white light interferometry algorithm will be presented. In contrast to more common algorithms it not depends on the fast Fourier transform. Using non-equidistant sampling steps is supported and will occur after compression. The algorithm can be applied to variety of target hardware ranging from embedded implementations with limited resources up to desktop computers and higher. It was invented to use the massively parallel architecture of field-programmable gate arrays (FPGA). The approach was proven on the Xilinx Zynq architecture and an x86 high level language implementation. Major improvements compared to more common solutions was the ability to compress the raw data easily while keeping the accuracy despite the limited hardware resources available. Independent of the height of the raw image stack the reconstruction can be solved in constant time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种快速资源高效白光干涉测量算法的大规模并行实现
本文将提出一种大规模平行白光干涉测量算法的实现。与更常见的算法相比它不依赖于快速傅里叶变换。支持使用非等距采样步骤,并将在压缩后发生。该算法可以应用于各种目标硬件,从资源有限的嵌入式实现到台式计算机和更高的硬件。它的发明是为了利用现场可编程门阵列(FPGA)的大规模并行架构。该方法在Xilinx Zynq架构和x86高级语言实现上得到了验证。与更常见的解决方案相比,主要的改进是能够轻松压缩原始数据,同时在硬件资源有限的情况下保持准确性。该方法不受原始图像叠加高度的影响,可以在恒定时间内完成重构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Satellite Multi-Vehicle Tracking under Inconsistent Detection Conditions by Bilevel K-Shortest Paths Optimization Classification of White Blood Cells using Bispectral Invariant Features of Nuclei Shape Impulse-Equivalent Sequences and Arrays Impact of MRI Protocols on Alzheimer's Disease Detection Strided U-Net Model: Retinal Vessels Segmentation using Dice Loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1