Towards a visualization of deep neural networks for rough line images

N. Chaudhary, S. Savari
{"title":"Towards a visualization of deep neural networks for rough line images","authors":"N. Chaudhary, S. Savari","doi":"10.1117/12.2535667","DOIUrl":null,"url":null,"abstract":"Low dose scanning electron microscope (SEM) images are an attractive option to estimate the roughness of nanos- tructures. We recently proposed two deep convolutional neural network (CNN) architectures named “LineNet” to simultaneously perform denoising and edge estimation on rough line SEM images. In this paper we consider multiple visualization tools to improve our understanding of LineNet1; one of these techniques is new to the visualization of denoising CNNs. We use the resulting insights from these visualizations to motivate a study of two variations of LineNet1 with fewer neural network layers. Furthermore, although in classification CNNs edge detection is commonly believed to happen early in the network, the visualization techniques suggest that important aspects of edge detection in LineNet1 occur late in the network.","PeriodicalId":287066,"journal":{"name":"European Mask and Lithography Conference","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Mask and Lithography Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2535667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Low dose scanning electron microscope (SEM) images are an attractive option to estimate the roughness of nanos- tructures. We recently proposed two deep convolutional neural network (CNN) architectures named “LineNet” to simultaneously perform denoising and edge estimation on rough line SEM images. In this paper we consider multiple visualization tools to improve our understanding of LineNet1; one of these techniques is new to the visualization of denoising CNNs. We use the resulting insights from these visualizations to motivate a study of two variations of LineNet1 with fewer neural network layers. Furthermore, although in classification CNNs edge detection is commonly believed to happen early in the network, the visualization techniques suggest that important aspects of edge detection in LineNet1 occur late in the network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向粗线图像的深度神经网络可视化
低剂量扫描电子显微镜(SEM)图像是估计纳米结构粗糙度的一个有吸引力的选择。我们最近提出了两种深度卷积神经网络(CNN)架构“LineNet”,用于同时对粗线SEM图像进行去噪和边缘估计。在本文中,我们考虑了多种可视化工具来提高我们对LineNet1的理解;其中一种技术是cnn去噪可视化的新技术。我们使用从这些可视化中得到的见解来激发对具有更少神经网络层的LineNet1的两种变体的研究。此外,尽管在分类cnn中,边缘检测通常被认为发生在网络的早期,但可视化技术表明,LineNet1中边缘检测的重要方面发生在网络的后期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synergy between quantum computing and semiconductor technology New registration calibration strategies for MBMW tools by PROVE measurements OPC flow for non-conventional layouts: specific application to optical diffusers Lithographic performance of resist ma-N 1402 in an e-beam/i-line stepper intra-level mix and match approach High-precision optical constant characterization of materials in the EUV spectral range: from large research facilities to laboratory-based instruments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1