A Deep Learning-based 3D CNN for Automated COVID-19 Lung Lesions Segmentation from 3D Chest CT Scans

A. Kermi, Hadj Cheikh Djennelbaroud, M. T. Khadir
{"title":"A Deep Learning-based 3D CNN for Automated COVID-19 Lung Lesions Segmentation from 3D Chest CT Scans","authors":"A. Kermi, Hadj Cheikh Djennelbaroud, M. T. Khadir","doi":"10.1109/ISIA55826.2022.9993505","DOIUrl":null,"url":null,"abstract":"This paper presents an automated COVID-19 lung lesions segmentation method based on a deep three-dimensional convolutional neural network model which automatically detects and extracts multifocal, bilateral and peripheral lung lesions from chest 3D-CT scans. The proposed CNN model is based on a modified 11-layer U-net architecture and employs a loss function that combines Dice coefficient and Cross-Entropy. It has been tested and evaluated on Covid-19-20_v2 training dataset containing a total of 199 3D-CT scans of different subjects with COVID-19 lesions representing different sizes, shapes and locations in CT images. The obtained results have proven to be satisfactory and objective, as well as similar and close to ground truth data provided by medical experts. On these challenging CT data, the proposed CNN obtained average scores of 0.7639, 0.8129 and 0.9986 corresponding to Dice Similarity Coefficient, Sensitivity and Specificity metrics respectively.","PeriodicalId":169898,"journal":{"name":"2022 5th International Symposium on Informatics and its Applications (ISIA)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Symposium on Informatics and its Applications (ISIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIA55826.2022.9993505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an automated COVID-19 lung lesions segmentation method based on a deep three-dimensional convolutional neural network model which automatically detects and extracts multifocal, bilateral and peripheral lung lesions from chest 3D-CT scans. The proposed CNN model is based on a modified 11-layer U-net architecture and employs a loss function that combines Dice coefficient and Cross-Entropy. It has been tested and evaluated on Covid-19-20_v2 training dataset containing a total of 199 3D-CT scans of different subjects with COVID-19 lesions representing different sizes, shapes and locations in CT images. The obtained results have proven to be satisfactory and objective, as well as similar and close to ground truth data provided by medical experts. On these challenging CT data, the proposed CNN obtained average scores of 0.7639, 0.8129 and 0.9986 corresponding to Dice Similarity Coefficient, Sensitivity and Specificity metrics respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的3D CNN从3D胸部CT扫描中自动分割COVID-19肺部病变
本文提出了一种基于深度三维卷积神经网络模型的新型冠状病毒肺炎(COVID-19)肺部病灶自动分割方法,该方法能够自动检测和提取胸部3D-CT扫描的多灶、双侧和周围肺病灶。提出的CNN模型基于改进的11层U-net架构,并采用结合Dice系数和Cross-Entropy的损失函数。在COVID-19 -20_v2训练数据集上进行了测试和评估,该数据集包含199个不同受试者的3D-CT扫描,CT图像中不同的COVID-19病变代表不同的大小,形状和位置。所获得的结果是令人满意和客观的,与医学专家提供的实际数据相似和接近。在这些具有挑战性的CT数据上,所提出的CNN在Dice Similarity Coefficient、Sensitivity和Specificity三个指标上的平均得分分别为0.7639、0.8129和0.9986。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vision Transformer Based Models for Plant Disease Detection and Diagnosis Computational Identification of Author Style on Electronic Libraries - Case of Lexical Features A Fluid Approach to Model and Assess the Energy Level of Autonomous devices in IoT with Solar Energy Harvesting Capability Super-resolution of document images using transfer deep learning of an ESRGAN model A Hybrid Semantic Statistical Query Expansion for Arabic Information Retrieval Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1