Stability analysis for a class of neural networks

R. Colbaugh, E. Barany
{"title":"Stability analysis for a class of neural networks","authors":"R. Colbaugh, E. Barany","doi":"10.1109/ISIC.1995.525093","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of characterizing the stability properties of the equilibria of an important class of recurrent neural networks. Sufficient conditions are given under which the neural network possesses a unique globally asymptotically stable equilibrium point for each external input. These conditions are less restrictive than those previously obtained and are easily checked, so that incorporating them in existing neural network design procedures should increase the flexibility and reduce the complexity of this synthesis process. Results are provided for both continuous-time and discrete-time networks.","PeriodicalId":219623,"journal":{"name":"Proceedings of Tenth International Symposium on Intelligent Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Tenth International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1995.525093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the problem of characterizing the stability properties of the equilibria of an important class of recurrent neural networks. Sufficient conditions are given under which the neural network possesses a unique globally asymptotically stable equilibrium point for each external input. These conditions are less restrictive than those previously obtained and are easily checked, so that incorporating them in existing neural network design procedures should increase the flexibility and reduce the complexity of this synthesis process. Results are provided for both continuous-time and discrete-time networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类神经网络的稳定性分析
研究一类重要的递归神经网络平衡点的稳定性性质。给出了神经网络对每个外部输入具有唯一全局渐近稳定平衡点的充分条件。这些条件比以前获得的条件限制更少,并且易于检查,因此将它们纳入现有的神经网络设计程序应增加灵活性并降低该合成过程的复杂性。给出了连续时间和离散时间网络的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
State representation and transfer function of a class of variable speed continuous Petri nets Experimental evaluation of an Encoder Trailer for dead-reckoning in tracked mobile robots A virtual reality based interface to a dynamic resource allocation scheduler Dynamic recurrent neural networks for modeling flexible robot dynamics Fuzzy logic controller for automatic vision parameter adjustment in a robotic dish handling system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1