Identification Of Induction Motor Parameters Using Wiener-Hammerstein Structure Based On Artificial Bee Colony Algorithm

Iman Sohrabi Chafjiri, M. Aghamohammadi, Hamid Gholipour Golroudbari
{"title":"Identification Of Induction Motor Parameters Using Wiener-Hammerstein Structure Based On Artificial Bee Colony Algorithm","authors":"Iman Sohrabi Chafjiri, M. Aghamohammadi, Hamid Gholipour Golroudbari","doi":"10.1109/KBEI.2019.8735055","DOIUrl":null,"url":null,"abstract":"In this paper, identification of parameters of induction motors using the Wiener-Hemerstein structure based on the colony helix algorithm. Identifying the system is actually finding a mathematical model of dynamical systems from input-output data, the results of experiments, and observations. Given the importance of induction machines in the industry, maintaining and protecting them is essential. One of the ways to keep such engines in check is to continuously monitor their health by continuous monitoring of the values of its structural parameters. In this paper, an engine model is estimated using the extracted data from the engine, which includes the effective values of the stator current and the power factor and the application of the colony helium algorithm. The results of the simulation show the high accuracy of the proposed method in identifying the parameters of induction motors in comparison with the previous methods.","PeriodicalId":339990,"journal":{"name":"2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI)","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KBEI.2019.8735055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, identification of parameters of induction motors using the Wiener-Hemerstein structure based on the colony helix algorithm. Identifying the system is actually finding a mathematical model of dynamical systems from input-output data, the results of experiments, and observations. Given the importance of induction machines in the industry, maintaining and protecting them is essential. One of the ways to keep such engines in check is to continuously monitor their health by continuous monitoring of the values of its structural parameters. In this paper, an engine model is estimated using the extracted data from the engine, which includes the effective values of the stator current and the power factor and the application of the colony helium algorithm. The results of the simulation show the high accuracy of the proposed method in identifying the parameters of induction motors in comparison with the previous methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工蜂群算法的Wiener-Hammerstein结构感应电机参数辨识
本文采用基于群体螺旋算法的Wiener-Hemerstein结构进行感应电机参数辨识。识别系统实际上是从输入输出数据、实验结果和观察中找到动力系统的数学模型。鉴于感应电机在工业中的重要性,维护和保护它们是必不可少的。保持这种发动机处于受控状态的方法之一是通过持续监测其结构参数的值来持续监测其健康状况。本文利用从发动机中提取的数据估计发动机模型,其中包括定子电流和功率因数的有效值,并应用了群氦算法。仿真结果表明,与现有方法相比,该方法具有较高的辨识精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Profitability Prediction for ATM Transactions Using Artificial Neural Networks: A Data-Driven Analysis Fabrication of UV detector by Schottky Pd/ZnO/Si Contacts Hybrid of genetic algorithm and krill herd for software clustering problem Development of a Hybrid Bayesian Network Model for Hydraulic Simulation of Agricultural Water Distribution and Delivery Using SIFT Descriptors for Face Recognition Based on Neural Network and Kepenekci Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1