Segmentation of the effective area of images of renal biopsy samples

S. Seminowich, A. Sar, S. Yilmaz, R. Rangayyan
{"title":"Segmentation of the effective area of images of renal biopsy samples","authors":"S. Seminowich, A. Sar, S. Yilmaz, R. Rangayyan","doi":"10.1109/CCECE.2009.5090101","DOIUrl":null,"url":null,"abstract":"Diagnosis and monitoring of kidney diseases and transplants is supported by microscopic analysis of needle-core biopsy samples. The current methods of analysis allow for inconsistencies, bias, and inaccuracies. We propose image processing methods for automatic segmentation of the effective biopsy area (cortex and medulla) from digital images of renal biopsy samples. The methods include opening-by-reconstruction, a morphological closing operation, and morphological erosion. The results are compared to 100 randomly selected images manually marked by an experienced renal pathologist. Comparative measures indicate that the automatically detected region of interest closely matches the ground truth; the mean distance to the closest point was 5.46 ± 3.92 µm (6 ± 4.31 pixels) and the true-positive fraction was 98.25 ± 1.77%.","PeriodicalId":153464,"journal":{"name":"2009 Canadian Conference on Electrical and Computer Engineering","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Canadian Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2009.5090101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Diagnosis and monitoring of kidney diseases and transplants is supported by microscopic analysis of needle-core biopsy samples. The current methods of analysis allow for inconsistencies, bias, and inaccuracies. We propose image processing methods for automatic segmentation of the effective biopsy area (cortex and medulla) from digital images of renal biopsy samples. The methods include opening-by-reconstruction, a morphological closing operation, and morphological erosion. The results are compared to 100 randomly selected images manually marked by an experienced renal pathologist. Comparative measures indicate that the automatically detected region of interest closely matches the ground truth; the mean distance to the closest point was 5.46 ± 3.92 µm (6 ± 4.31 pixels) and the true-positive fraction was 98.25 ± 1.77%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肾活检样本图像有效区域的分割
肾脏疾病和移植的诊断和监测是由针芯活检样本的显微分析支持的。当前的分析方法允许不一致、偏差和不准确。我们提出了从肾活检样本的数字图像中自动分割有效活检区域(皮质和髓质)的图像处理方法。方法包括重建开放、形态闭合和形态侵蚀。结果与100个随机选择的图像进行比较,由经验丰富的肾脏病理学家手动标记。对比测量表明,自动检测的感兴趣区域与地面真实值非常匹配;离最近点的平均距离为5.46±3.92µm(6±4.31像素),真阳性分数为98.25±1.77%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ATSC multipath channel characterization for fixed and mobile reception A compactmodular active vision system formulti-target surveillance A software simulator for Geomagnetically Induced Currents in electrical power systems A Virtual Node-based Shared Restoration scheme in multi-domain networks Microstrip patch antenna for RFID applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1