Tracking User Application Activity by using Machine Learning Techniques on Network Traffic

Sina Fathi Kazerooni, Yagiz Kaymak, R. Rojas-Cessa
{"title":"Tracking User Application Activity by using Machine Learning Techniques on Network Traffic","authors":"Sina Fathi Kazerooni, Yagiz Kaymak, R. Rojas-Cessa","doi":"10.1109/ICAIIC.2019.8669040","DOIUrl":null,"url":null,"abstract":"A network eavesdropper may invade the privacy of an online user by collecting the passing traffic and classifying the applications that generated the network traffic. This collection may be used to build fingerprints of the user’s Internet usage. In this paper, we investigate the feasibility of performing such breach on encrypted network traffic generated by actual users. We adopt the random forest algorithm to classify the applications in use by users of a campus network. Our classification system identifies and quantifies different statistical features of user’s network traffic to classify applications rather than looking into packet contents. In addition, application classification is performed without employing a port mapping at the transport layer. Our results show that applications can be identified with an average precision and recall of up to 99%.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8669040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A network eavesdropper may invade the privacy of an online user by collecting the passing traffic and classifying the applications that generated the network traffic. This collection may be used to build fingerprints of the user’s Internet usage. In this paper, we investigate the feasibility of performing such breach on encrypted network traffic generated by actual users. We adopt the random forest algorithm to classify the applications in use by users of a campus network. Our classification system identifies and quantifies different statistical features of user’s network traffic to classify applications rather than looking into packet contents. In addition, application classification is performed without employing a port mapping at the transport layer. Our results show that applications can be identified with an average precision and recall of up to 99%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在网络流量上使用机器学习技术跟踪用户应用程序活动
网络窃听者可以通过收集通过的流量并对产生网络流量的应用程序进行分类,从而侵犯在线用户的隐私。这个集合可以用来建立用户互联网使用的指纹。在本文中,我们研究了对实际用户生成的加密网络流量执行这种破坏的可行性。采用随机森林算法对校园网用户使用的应用程序进行分类。我们的分类系统识别和量化用户网络流量的不同统计特征,以对应用程序进行分类,而不是查看数据包内容。此外,在执行应用程序分类时,不需要在传输层使用端口映射。我们的结果表明,该方法可以识别应用程序,平均精度和召回率高达99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stock Prices Prediction using the Title of Newspaper Articles with Korean Natural Language Processing Deep learning based decomposition of brain networks Simulation on Delay of Several Random Access Schemes A Machine-Learning-Based Channel Assignment Algorithm for IoT The Properties of mode prediction using mean root error for regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1