Prior-Guided Parallel Residual Bi-Fusion Network in USV Obstacle Detection

Chih-Chung Hsu, Sophia Yang, Xiu-Yu Hou, Yu-An Jhang
{"title":"Prior-Guided Parallel Residual Bi-Fusion Network in USV Obstacle Detection","authors":"Chih-Chung Hsu, Sophia Yang, Xiu-Yu Hou, Yu-An Jhang","doi":"10.1109/ICCE-Taiwan58799.2023.10226878","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel Prior-Guided Parallel Residual Bi-Fusion Feature Pyramid Network (PPRB-FPN) for accurate obstacle detection in unmanned surface vehicle (USV) sailing. Our method tackles the challenge of detecting small objects, which are prone to information vanishing. To the end, we leverage the PRB-FPN for small object detection and YOLOv7 as a single-stage object detector to effectively identify obstacles. Our experimental results on the Obstacle Detection Challenge dataset at the 1st Workshop on Maritime Computer Vision (MaCVi) demonstrate that our method outperforms both Mask R-CNN (mrcnn) and YOLOv7, achieving an F_avg score of 0.514.","PeriodicalId":112903,"journal":{"name":"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan58799.2023.10226878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel Prior-Guided Parallel Residual Bi-Fusion Feature Pyramid Network (PPRB-FPN) for accurate obstacle detection in unmanned surface vehicle (USV) sailing. Our method tackles the challenge of detecting small objects, which are prone to information vanishing. To the end, we leverage the PRB-FPN for small object detection and YOLOv7 as a single-stage object detector to effectively identify obstacles. Our experimental results on the Obstacle Detection Challenge dataset at the 1st Workshop on Maritime Computer Vision (MaCVi) demonstrate that our method outperforms both Mask R-CNN (mrcnn) and YOLOv7, achieving an F_avg score of 0.514.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
USV障碍物检测中的先验引导并行残差双融合网络
本文提出了一种新的基于先验制导的平行残差双融合特征金字塔网络(PPRB-FPN),用于无人水面航行器(USV)的精确障碍物检测。我们的方法解决了检测容易丢失信息的小物体的挑战。最后,我们利用PRB-FPN进行小目标检测,YOLOv7作为单级目标检测器有效识别障碍物。我们在第一届海事计算机视觉研讨会(MaCVi)上的障碍物检测挑战数据集上的实验结果表明,我们的方法优于Mask R-CNN (mrcnn)和YOLOv7,达到了0.514的F_avg分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing a visual IoT environment analysis system to support self-directed learning of students Smallest Botnet Firewall Building Problem and a Girvan-Newman Algorithm-Based Heuristic Solution Parametric Optimization of WEDM Process for Machining ANSI Steel Using Soft-Computing Methods Development of a Transmissive LED Touch Display for Engineered Marble Sewage Treatment Interactive Learning Game Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1