Noise-robust exemplar matching for rescoring query-by-example search

Emre Yilmaz, Julien van Hout, H. Franco
{"title":"Noise-robust exemplar matching for rescoring query-by-example search","authors":"Emre Yilmaz, Julien van Hout, H. Franco","doi":"10.1109/ASRU.2017.8268909","DOIUrl":null,"url":null,"abstract":"This paper describes a two-step approach for keyword spotting task in which a query-by-example (QbE) search is followed by noise robust exemplar matching (N-REM) rescoring. In the first stage, subsequence dynamic time warping is performed to detect keywords in search utterances. In the second stage, these target frame sequences are rescored using the reconstruction errors provided by the linear combination of the available exemplars extracted from the training data. Due to data sparsity, we align the target frame sequence and the exemplars to a common frame length and the exemplar weights are obtained by solving a convex optimization problem with nonnegative sparse coding. We run keyword spotting experiments on the Air Traffic Control (ATC) database and evaluate performance of multiple distance metrics for calculating the weights and reconstruction errors using convolutional neural network (CNN) bottleneck features. The results demonstrate that the proposed two-step keyword spotting approach provides better keyword detection compared to a baseline with only QbE search.","PeriodicalId":290868,"journal":{"name":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2017.8268909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes a two-step approach for keyword spotting task in which a query-by-example (QbE) search is followed by noise robust exemplar matching (N-REM) rescoring. In the first stage, subsequence dynamic time warping is performed to detect keywords in search utterances. In the second stage, these target frame sequences are rescored using the reconstruction errors provided by the linear combination of the available exemplars extracted from the training data. Due to data sparsity, we align the target frame sequence and the exemplars to a common frame length and the exemplar weights are obtained by solving a convex optimization problem with nonnegative sparse coding. We run keyword spotting experiments on the Air Traffic Control (ATC) database and evaluate performance of multiple distance metrics for calculating the weights and reconstruction errors using convolutional neural network (CNN) bottleneck features. The results demonstrate that the proposed two-step keyword spotting approach provides better keyword detection compared to a baseline with only QbE search.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于逐例查询搜索记录的噪声鲁棒样本匹配
本文描述了一种基于实例查询(QbE)搜索和噪声鲁棒样例匹配(N-REM)评分的两步关键字识别方法。在第一阶段,通过子序列动态时间翘曲来检测搜索话语中的关键字。在第二阶段,使用从训练数据中提取的可用样本的线性组合提供的重建误差来重建这些目标帧序列。由于数据的稀疏性,我们将目标帧序列和样本对齐到一个共同的帧长度,并通过求解一个非负稀疏编码的凸优化问题来获得样本的权重。我们在空中交通管制(ATC)数据库上进行了关键词识别实验,并利用卷积神经网络(CNN)瓶颈特征评估了多个距离指标计算权重和重建误差的性能。结果表明,与仅使用QbE搜索的基线相比,所提出的两步关键字定位方法提供了更好的关键字检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable multi-domain dialogue state tracking Topic segmentation in ASR transcripts using bidirectional RNNS for change detection Consistent DNN uncertainty training and decoding for robust ASR Cracking the cocktail party problem by multi-beam deep attractor network ONENET: Joint domain, intent, slot prediction for spoken language understanding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1