Smart Vibration Monitoring System for an Ocean Turbine

Mustapha Mjit, P. Beaujean, D. Vendittis
{"title":"Smart Vibration Monitoring System for an Ocean Turbine","authors":"Mustapha Mjit, P. Beaujean, D. Vendittis","doi":"10.1109/HASE.2011.34","DOIUrl":null,"url":null,"abstract":"This paper describes a Smart Vibration Monitoring System (SVMS) developed as an effective way to reduce equipment losses and enhance safety, efficiency, reliability, availability and long life time duration of an ocean turbine. The system utilizes advanced signal processing and analysis techniques to evaluate the health of a machine and identify incipient anomalies (faults) and evaluate their severity relative to the machine's condition. The existing system and planned improvements are described and discussed. The primary function of the SVMS is an automatic machinery fault detection and diagnosis based on real time processing and analysis of vibration data. The SVMS basically performs the same functions as a vibration analyst would for post processing of off-line data. The SVMS automatically sends a warning message to a cell phone and to an email address as soon as it detects a fault that is developing within the machine. The message will contain a generic identification of the fault.","PeriodicalId":403140,"journal":{"name":"2011 IEEE 13th International Symposium on High-Assurance Systems Engineering","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 13th International Symposium on High-Assurance Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HASE.2011.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper describes a Smart Vibration Monitoring System (SVMS) developed as an effective way to reduce equipment losses and enhance safety, efficiency, reliability, availability and long life time duration of an ocean turbine. The system utilizes advanced signal processing and analysis techniques to evaluate the health of a machine and identify incipient anomalies (faults) and evaluate their severity relative to the machine's condition. The existing system and planned improvements are described and discussed. The primary function of the SVMS is an automatic machinery fault detection and diagnosis based on real time processing and analysis of vibration data. The SVMS basically performs the same functions as a vibration analyst would for post processing of off-line data. The SVMS automatically sends a warning message to a cell phone and to an email address as soon as it detects a fault that is developing within the machine. The message will contain a generic identification of the fault.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海洋水轮机智能振动监测系统
本文介绍了一种智能振动监测系统(SVMS),该系统是减少设备损失,提高海洋水轮机安全性、效率、可靠性、可用性和长寿命的有效途径。该系统利用先进的信号处理和分析技术来评估机器的健康状况,识别早期的异常(故障),并评估其相对于机器状况的严重程度。对现有系统和计划中的改进进行了描述和讨论。支持向量机的主要功能是基于对振动数据的实时处理和分析,实现机械故障的自动检测和诊断。支持向量机基本上执行与振动分析人员对离线数据进行后处理相同的功能。一旦检测到机器内部出现故障,SVMS就会自动向手机和电子邮件地址发送警告信息。该消息将包含故障的一般标识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autonomous Online Expansion Technology for ZigBee Wireless Sensor Networks A Calculus for Mobile Ad Hoc Networks from a Group Probabilistic Perspective Regression Testing of Component-Based Software: A Systematic Practise Based on State Testing Supporting Iterative Development of Robust Operation Contracts in UML Requirements Models On the Relationship between Preprocessor-Based Software Variability and Software Defects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1