Dimensionality Reduction for the Algorithm Recommendation Problem

Edesio Alcobaça, R. G. Mantovani, A. L. Rossi, A. Carvalho
{"title":"Dimensionality Reduction for the Algorithm Recommendation Problem","authors":"Edesio Alcobaça, R. G. Mantovani, A. L. Rossi, A. Carvalho","doi":"10.1109/BRACIS.2018.00062","DOIUrl":null,"url":null,"abstract":"Given the increase in data generation, as many algorithms have become available in recent years, the algorithm recommendation problem has attracted increasing attention in Machine Learning. This problem has been addressed in the Machine Learning community as a learning task at the meta-level where the most suitable algorithm has to be recommended for a specific dataset. Since it is not trivial to define which characteristics are the most useful for a specific domain, several meta-features have been proposed and used, increasing the meta-data meta-feature dimension. This study investigates the influence of dimensionality reduction techniques on the quality of the algorithm recommendation process. Experiments were carried out with 15 algorithm recommendation problems from the Aslib library, 4 meta-learners, and 3 dimensionality reduction techniques. The experimental results showed that linear aggregation techniques, such as PCA and LDA, can be used in algorithm recommendation problems to reduce the number of meta-features and computational cost without losing predictive performance.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Given the increase in data generation, as many algorithms have become available in recent years, the algorithm recommendation problem has attracted increasing attention in Machine Learning. This problem has been addressed in the Machine Learning community as a learning task at the meta-level where the most suitable algorithm has to be recommended for a specific dataset. Since it is not trivial to define which characteristics are the most useful for a specific domain, several meta-features have been proposed and used, increasing the meta-data meta-feature dimension. This study investigates the influence of dimensionality reduction techniques on the quality of the algorithm recommendation process. Experiments were carried out with 15 algorithm recommendation problems from the Aslib library, 4 meta-learners, and 3 dimensionality reduction techniques. The experimental results showed that linear aggregation techniques, such as PCA and LDA, can be used in algorithm recommendation problems to reduce the number of meta-features and computational cost without losing predictive performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
算法推荐问题的降维方法
随着数据生成的增加,近年来出现了许多算法,算法推荐问题在机器学习中越来越受到关注。这个问题已经在机器学习社区中作为元级的学习任务来解决,在元级学习任务中,必须为特定的数据集推荐最合适的算法。由于定义哪些特征对特定领域最有用并非易事,因此已经提出并使用了几个元特征,从而增加了元数据元特征维度。本研究探讨了降维技术对算法推荐过程质量的影响。实验使用了来自Aslib库的15个算法推荐问题、4个元学习器和3种降维技术。实验结果表明,线性聚合技术(如PCA和LDA)可以用于算法推荐问题,在不损失预测性能的情况下减少元特征的数量和计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Data Using Extended Association Rule Network SPt: A Text Mining Process to Extract Relevant Areas from SW Documents to Exploratory Tests Gene Essentiality Prediction Using Topological Features From Metabolic Networks Bio-Inspired and Heuristic Methods Applied to a Benchmark of the Task Scheduling Problem A New Genetic Algorithm-Based Pruning Approach for Optimum-Path Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1