A general framework for automatic detection of matching lesions in follow-up CT

J. Moltz, M. Schwier, H. Peitgen
{"title":"A general framework for automatic detection of matching lesions in follow-up CT","authors":"J. Moltz, M. Schwier, H. Peitgen","doi":"10.1109/ISBI.2009.5193184","DOIUrl":null,"url":null,"abstract":"In follow-up CT examinations of cancer patients, therapy success is evaluated by estimating the change in tumor size from diameter or volume comparison between corresponding lesions. We present an algorithm that automatizes the detection of matching lesions, given a baseline segmentation mask. It is generally applicable and does not need an organ mask or CAD findings, only a coarse registration of the datasets is required. In the first step, lesion candidates are identified in a local area based on gray value filtering and detection of circular structures using a Hough transform. On all candidate voxels, a template matching is performed minimizing normalized cross-correlation. The method was evaluated on clinical follow-up data comprising 94 lung nodules, 107 liver metastases, and 137 lymph nodes. The ratio of correctly detected lesions was 96%, 84% and 85%, respectively, at an average computation time of 0.9 s per lesion on a standard PC.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5193184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In follow-up CT examinations of cancer patients, therapy success is evaluated by estimating the change in tumor size from diameter or volume comparison between corresponding lesions. We present an algorithm that automatizes the detection of matching lesions, given a baseline segmentation mask. It is generally applicable and does not need an organ mask or CAD findings, only a coarse registration of the datasets is required. In the first step, lesion candidates are identified in a local area based on gray value filtering and detection of circular structures using a Hough transform. On all candidate voxels, a template matching is performed minimizing normalized cross-correlation. The method was evaluated on clinical follow-up data comprising 94 lung nodules, 107 liver metastases, and 137 lymph nodes. The ratio of correctly detected lesions was 96%, 84% and 85%, respectively, at an average computation time of 0.9 s per lesion on a standard PC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种后续CT匹配病灶自动检测的总体框架
在癌症患者的后续CT检查中,通过比较相应病变的直径或体积来估计肿瘤大小的变化来评估治疗成功。我们提出了一种算法,自动检测匹配病灶,给定基线分割掩码。它是普遍适用的,不需要器官掩膜或CAD结果,只需要对数据集进行粗略注册。在第一步中,基于灰度值滤波和使用霍夫变换检测圆形结构,在局部区域识别候选病灶。对所有候选体素进行模板匹配,使归一化相互关系最小化。该方法的临床随访数据包括94个肺结节,107个肝转移和137个淋巴结。在标准PC上,每个病灶平均计算时间为0.9 s,病灶正确率分别为96%、84%和85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic alignment of stacks of filament data Analysis of nerve activity and optical signals from mouse brain stem to identify cells generating respiratory rhythms Segmentation and classification of triple negative breast cancers using DCE-MRI Improved registration for large electron microscopy images Special purpose 3-D reconstruction and restoration algorithms for electron microscopy of nanoscale objects and an enabling software toolkit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1