Fabien Drault, Y. Snoussi, Camila P. Ferraz, J. Thuriot-Roukos, S. Heyte, I. I. Júnior, Maya Marinova, S. Paul, R. Wojcieszak
{"title":"Versatility of Supported Gold Nanoparticles on Hydrotalcites used for Oxidation and Reduction Reactions","authors":"Fabien Drault, Y. Snoussi, Camila P. Ferraz, J. Thuriot-Roukos, S. Heyte, I. I. Júnior, Maya Marinova, S. Paul, R. Wojcieszak","doi":"10.21926/cr.2201001","DOIUrl":null,"url":null,"abstract":"Regardless of their size, supported gold nanoparticles are largely used for liquid-phase oxidation reactions. Small gold nanoparticles exhibit good performance during the reduction of organic compounds. The direct reduction of carboxylic acid to aldehyde is a famous and familiar reaction in the field of organic chemistry and is considered as one of the fundamental chemical transformations. Herein, we present Au/hydrotalcite, Au/MgO, and Au/Al2O3 systems as heterogeneous versatile catalysts to realize the oxidation of furfural (FF) to furoic acid (FA) and realize the reduction of FA to FF. Experiments showed that in standard aqueous conditions under air, FF can be easily oxidized to FA. When DMSO was used as a solvent to conduct the experiments under an atmosphere of CO2, FA was reduced to FF. The Au/HT series of catalysts was found to be active in both transformations, pointing out the versatility of the gold-based catalysts. The activity significantly depends on the acid-base properties of the catalyst.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/cr.2201001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Regardless of their size, supported gold nanoparticles are largely used for liquid-phase oxidation reactions. Small gold nanoparticles exhibit good performance during the reduction of organic compounds. The direct reduction of carboxylic acid to aldehyde is a famous and familiar reaction in the field of organic chemistry and is considered as one of the fundamental chemical transformations. Herein, we present Au/hydrotalcite, Au/MgO, and Au/Al2O3 systems as heterogeneous versatile catalysts to realize the oxidation of furfural (FF) to furoic acid (FA) and realize the reduction of FA to FF. Experiments showed that in standard aqueous conditions under air, FF can be easily oxidized to FA. When DMSO was used as a solvent to conduct the experiments under an atmosphere of CO2, FA was reduced to FF. The Au/HT series of catalysts was found to be active in both transformations, pointing out the versatility of the gold-based catalysts. The activity significantly depends on the acid-base properties of the catalyst.