Learning textural concepts through multilevel symbolic transformations

J. Bala, R. Michalski
{"title":"Learning textural concepts through multilevel symbolic transformations","authors":"J. Bala, R. Michalski","doi":"10.1109/TAI.1991.167081","DOIUrl":null,"url":null,"abstract":"The TEXTRAL system, used for determining structural visual properties of textures through symbolic transformations, is presented. The method consists of two phases: one that extracts information from raw textural images by applying convolutional operators and learns an initial set of rules; and a second that iteratively extracts symbolic information from the transformed representation of initial image and learns another set of rules. The transformed symbolic representation is obtained by applying previously learned rules to a new image location and generating symbolic images based on rule assertions.<<ETX>>","PeriodicalId":371778,"journal":{"name":"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1991.167081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The TEXTRAL system, used for determining structural visual properties of textures through symbolic transformations, is presented. The method consists of two phases: one that extracts information from raw textural images by applying convolutional operators and learns an initial set of rules; and a second that iteratively extracts symbolic information from the transformed representation of initial image and learns another set of rules. The transformed symbolic representation is obtained by applying previously learned rules to a new image location and generating symbolic images based on rule assertions.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过多层符号转换学习纹理概念
提出了TEXTRAL系统,用于通过符号变换确定纹理的结构视觉特性。该方法包括两个阶段:一是通过卷积算子从原始纹理图像中提取信息,并学习一组初始规则;第二步是迭代地从原始图像的变换表示中提取符号信息,并学习另一组规则。将先前学习到的规则应用到新的图像位置,并根据规则断言生成符号图像,从而获得转换后的符号表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AUTOTEC: an English to Chinese machine translation system Backward assembly planning An event-based real-time logic to specify the behavior and timing properties of real-time systems Feature-based design evaluation through constraint structure unification Extending the learnability of decision trees
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1