{"title":"EEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations","authors":"Reza Ebrahimi Atani, S. E. Atani, A. Karbasi","doi":"10.22042/ISECURE.2016.7.2.4","DOIUrl":null,"url":null,"abstract":"GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [_3] where _3 is a primitive cube root of unity. EEH applies representations of polynomials to the GGH encryption scheme and we discuss its key size and parameters selection. We also provide theoretical and experimental data to compare the security and efficiency of EEH to GGH with comparable parameter sets and show that EEH is an improvement over GGH in terms of security and efficiency.","PeriodicalId":436674,"journal":{"name":"ISC Int. J. Inf. Secur.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISC Int. J. Inf. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22042/ISECURE.2016.7.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [_3] where _3 is a primitive cube root of unity. EEH applies representations of polynomials to the GGH encryption scheme and we discuss its key size and parameters selection. We also provide theoretical and experimental data to compare the security and efficiency of EEH to GGH with comparable parameter sets and show that EEH is an improvement over GGH in terms of security and efficiency.