Solving the Multi-class Classification Task in Spiking Neural Network by using Supervised Spiking Learning Rule with a Consistent Competitive Mechanism
{"title":"Solving the Multi-class Classification Task in Spiking Neural Network by using Supervised Spiking Learning Rule with a Consistent Competitive Mechanism","authors":"Viet-Ngu Cong Huynh, K. Lee","doi":"10.1145/3400286.3418274","DOIUrl":null,"url":null,"abstract":"In recent years, spiking neural networks (SNNs), a computing model inspired by the brain's ability to code and process information in the time domain with great computational power, has drawn a lot of attention from researchers for learning applications. For training in SNNs, several supervised spiking learning rules have been proposed, however, applying these learning algorithms to real-world problems yet remains an open issue. For this reason, this paper presents a new spiking neural network for the handwritten digit dataset classification problem. Our proposed network is trained by using the spike-based NormAD algorithm with a consistent winner-take-all mechanism. The experiment has shown a promising performance just after one epoch passing over the test dataset.","PeriodicalId":326100,"journal":{"name":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3400286.3418274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, spiking neural networks (SNNs), a computing model inspired by the brain's ability to code and process information in the time domain with great computational power, has drawn a lot of attention from researchers for learning applications. For training in SNNs, several supervised spiking learning rules have been proposed, however, applying these learning algorithms to real-world problems yet remains an open issue. For this reason, this paper presents a new spiking neural network for the handwritten digit dataset classification problem. Our proposed network is trained by using the spike-based NormAD algorithm with a consistent winner-take-all mechanism. The experiment has shown a promising performance just after one epoch passing over the test dataset.