Integration of Calibration and Forcing Methods for Predicting Timely Crop States by Using AquaCrop-OS Model

Tianxiang Zhang, Jinya Su, Cunjia Liu, Wen‐Hua Chen
{"title":"Integration of Calibration and Forcing Methods for Predicting Timely Crop States by Using AquaCrop-OS Model","authors":"Tianxiang Zhang, Jinya Su, Cunjia Liu, Wen‐Hua Chen","doi":"10.31256/ukras19.29","DOIUrl":null,"url":null,"abstract":"This paper presents a framework for predicting canopy states in real time by adopting a recent MATLAB based crop model: AquaCrop-OS. The historical observations are firstly used to estimate the crop sensitive parameters in Bayesian approach. Secondly, the model states will be replaced by updating remotely sensed observations in a sequential way. The final predicted states will be in comparison with the groundtruth and the RMSE of these two are 39.4155 g/ 𝒎𝟐 (calibration method) and 19.3679 g/𝒎𝟐(calibration with forcing method) concluding that the system is capable of predicting the crop status timely and improve the performance of calibration strategy.","PeriodicalId":424229,"journal":{"name":"UK-RAS19 Conference: \"Embedded Intelligence: Enabling and Supporting RAS Technologies\" Proceedings","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UK-RAS19 Conference: \"Embedded Intelligence: Enabling and Supporting RAS Technologies\" Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31256/ukras19.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a framework for predicting canopy states in real time by adopting a recent MATLAB based crop model: AquaCrop-OS. The historical observations are firstly used to estimate the crop sensitive parameters in Bayesian approach. Secondly, the model states will be replaced by updating remotely sensed observations in a sequential way. The final predicted states will be in comparison with the groundtruth and the RMSE of these two are 39.4155 g/ 𝒎𝟐 (calibration method) and 19.3679 g/𝒎𝟐(calibration with forcing method) concluding that the system is capable of predicting the crop status timely and improve the performance of calibration strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于AquaCrop-OS模型的作物状态实时预测的校准与强迫方法集成
本文采用最新的基于MATLAB的作物模型AquaCrop-OS,提出了一个实时预测冠层状态的框架。首先利用历史观测值对作物敏感参数进行贝叶斯估计。其次,将模型状态替换为逐次更新遥感观测数据。将最终的预测状态与实测结果进行对比,两者的均方根误差分别为39.4155 g/𝒎(校准法)和19.3679 g/𝒎(强迫法),表明该系统能够及时预测作物状态,提高了校准策略的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Deep Adaptive Framework for Robust Myoelectric Hand Movement Prediction Trajectory Creation Towards Fast Skill Deployment in Plug-and- Produce Assembly Systems: A Gaussian-Mixture Model Approach An Information Theoretic Approach to Path Planning for Frontier Exploration Establishing Continuous Communication through Dynamic Team Behaviour Switching Development of a Multi-robotic System for Exploration of Biomass Power Plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1