Rehabilitation robot in intelligent home environment - software architecture and implementation of a distributed system

O. Prenzel, J. Feuser, A. Graser
{"title":"Rehabilitation robot in intelligent home environment - software architecture and implementation of a distributed system","authors":"O. Prenzel, J. Feuser, A. Graser","doi":"10.1109/ICORR.2005.1501158","DOIUrl":null,"url":null,"abstract":"Rehabilitation robots (e.g. FRIEND as intelligent wheelchair mounted manipulator) are being developed to gain their user's autonomy within daily life environment. To prevent a high cognitive load onto the user, task input on a high level of abstraction is mandatory. State-of-the-art rehabilitation robots are still not capable to integrate fragments of intelligent behavior into an overall context and to solve complex tasks. A basic problem is how to cope with system complexity as well as computational complexity that evolve during task planning. A compromise towards feasibility is to equip the system's environment with smart components that provide own intelligence and thus reduce the complexity of the robotic system. However, a structured approach is necessary to fuse the distributed intelligence. This paper is about the concept and realization of a software-framework being able to execute autonomous system operations together with information retrieving capabilities and user interactions within a distributed system. Key aspects of development have been to provide robust run-time behavior of the system along with the inclusion and resolving of redundant sensor information as well as to reduce the effort of system programming to a minimum. The application of the developed framework is demonstrated on base of sample steps of its integration with the FRIEND II rehabilitation robotic system within an intelligent home environment.","PeriodicalId":131431,"journal":{"name":"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2005.1501158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Rehabilitation robots (e.g. FRIEND as intelligent wheelchair mounted manipulator) are being developed to gain their user's autonomy within daily life environment. To prevent a high cognitive load onto the user, task input on a high level of abstraction is mandatory. State-of-the-art rehabilitation robots are still not capable to integrate fragments of intelligent behavior into an overall context and to solve complex tasks. A basic problem is how to cope with system complexity as well as computational complexity that evolve during task planning. A compromise towards feasibility is to equip the system's environment with smart components that provide own intelligence and thus reduce the complexity of the robotic system. However, a structured approach is necessary to fuse the distributed intelligence. This paper is about the concept and realization of a software-framework being able to execute autonomous system operations together with information retrieving capabilities and user interactions within a distributed system. Key aspects of development have been to provide robust run-time behavior of the system along with the inclusion and resolving of redundant sensor information as well as to reduce the effort of system programming to a minimum. The application of the developed framework is demonstrated on base of sample steps of its integration with the FRIEND II rehabilitation robotic system within an intelligent home environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能家居环境下的康复机器人分布式系统的软件架构与实现
康复机器人(如FRIEND作为安装在轮椅上的智能机械手)正在被开发,以获得用户在日常生活环境中的自主性。为了防止给用户带来高认知负荷,必须在高抽象级别上进行任务输入。最先进的康复机器人仍然无法将智能行为的片段整合到整体环境中,也无法解决复杂的任务。一个基本问题是如何处理系统复杂性以及在任务规划过程中演变的计算复杂性。可行性的一个折衷方案是为系统环境配备智能组件,这些组件可以提供自身的智能,从而降低机器人系统的复杂性。然而,需要一种结构化的方法来融合分布式智能。本文讨论了一个软件框架的概念和实现,该框架能够在分布式系统中执行自主系统操作,并具有信息检索能力和用户交互能力。开发的关键方面是提供系统的健壮运行时行为,同时包含和解决冗余传感器信息,以及将系统编程的工作量减少到最低限度。通过与FRIEND II康复机器人系统在智能家居环境中的集成示例步骤,演示了所开发框架的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A dual input device for self-assisted control of a virtual pendulum Realizing a posture-based wearable antigravity muscles support system for lower extremities Adjustable robotic tendon using a 'Jack Spring'/spl trade/ A 3-D rehabilitation system for upper limbs developed in a 5-year NEDO project and its clinical testing A motorized gravity compensation mechanism used for active rehabilitation of upper limbs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1