Visualizing anomalies in sensor networks

Qi Liao, Lei Shi, Yuan He, Rui Li, Zhongji Su, A. Striegel, Yunhao Liu
{"title":"Visualizing anomalies in sensor networks","authors":"Qi Liao, Lei Shi, Yuan He, Rui Li, Zhongji Su, A. Striegel, Yunhao Liu","doi":"10.1145/2018436.2018521","DOIUrl":null,"url":null,"abstract":"Diagnosing a large-scale sensor network is a crucial but challenging task due to the spatiotemporally dynamic network behaviors of sensor nodes. In this demo, we present Sensor Anomaly Visualization Engine (SAVE), an integrated system that tackles the sensor network diagnosis problem using both visualization and anomaly detection analytics to guide the user quickly and accurately diagnose sensor network failures. Temporal expansion model, correlation graphs and dynamic projection views are proposed to effectively interpret the topological, correlational and dimensional sensor data dynamics and their anomalies. Through a real-world large-scale wireless sensor network deployment (GreenOrbs), we demonstrate that SAVE is able to help better locate the problem and further identify the root cause of major sensor network failures.","PeriodicalId":350796,"journal":{"name":"Proceedings of the ACM SIGCOMM 2011 conference","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGCOMM 2011 conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2018436.2018521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Diagnosing a large-scale sensor network is a crucial but challenging task due to the spatiotemporally dynamic network behaviors of sensor nodes. In this demo, we present Sensor Anomaly Visualization Engine (SAVE), an integrated system that tackles the sensor network diagnosis problem using both visualization and anomaly detection analytics to guide the user quickly and accurately diagnose sensor network failures. Temporal expansion model, correlation graphs and dynamic projection views are proposed to effectively interpret the topological, correlational and dimensional sensor data dynamics and their anomalies. Through a real-world large-scale wireless sensor network deployment (GreenOrbs), we demonstrate that SAVE is able to help better locate the problem and further identify the root cause of major sensor network failures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
传感器网络异常可视化
由于传感器节点的时空动态网络行为,大规模传感器网络的诊断是一项至关重要但具有挑战性的任务。在这个演示中,我们展示了传感器异常可视化引擎(SAVE),这是一个集成系统,它使用可视化和异常检测分析来解决传感器网络诊断问题,以指导用户快速准确地诊断传感器网络故障。提出了时间展开模型、相关图和动态投影图,有效地解释了拓扑、相关和量纲传感器数据的动态及其异常。通过真实世界的大规模无线传感器网络部署(GreenOrbs),我们证明了SAVE能够帮助更好地定位问题,并进一步确定主要传感器网络故障的根本原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The evolution of layered protocol stacks leads to an hourglass-shaped architecture Improving datacenter performance and robustness with multipath TCP Understanding the impact of video quality on user engagement Insomnia in the access: or how to curb access network related energy consumption Optimizing a virtualized data center
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1