A Trusted Bluetooth Performance Evaluation Model for Brain Computer Interfaces

Hassan Karim, D. Rawat
{"title":"A Trusted Bluetooth Performance Evaluation Model for Brain Computer Interfaces","authors":"Hassan Karim, D. Rawat","doi":"10.1109/IRI.2019.00021","DOIUrl":null,"url":null,"abstract":"Bluetooth enables excellent mobility in Brain Computer Interface (BCI) research and other use cases including ambulatory care, telemedicine, fitness tracking and mindfulness training. Although significant research exists for an all-encompassing BCI performance rating, almost all the literature addresses performance in terms of brain state or brain function classification accuracy. For the few published experiments that address BCI hardware performance, they too, focused on improving classification accuracy. This paper explores some of the more recent studies and proposes a trusted performance rating for BCI applications based on the enhanced privacy, yet reduced bandwidth needs of mobile EEG-based BCI applications. This paper proposes a set of Bluetooth operating parameters required to meet the performance, usability and privacy requirements of reliable and secure mobile neuro-feedback applications. It presents a rating model, \"Trusted Mobile BCI\", based on those operating parameters, and validated the model with studies that leveraged mobile BCI technology.","PeriodicalId":295028,"journal":{"name":"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2019.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Bluetooth enables excellent mobility in Brain Computer Interface (BCI) research and other use cases including ambulatory care, telemedicine, fitness tracking and mindfulness training. Although significant research exists for an all-encompassing BCI performance rating, almost all the literature addresses performance in terms of brain state or brain function classification accuracy. For the few published experiments that address BCI hardware performance, they too, focused on improving classification accuracy. This paper explores some of the more recent studies and proposes a trusted performance rating for BCI applications based on the enhanced privacy, yet reduced bandwidth needs of mobile EEG-based BCI applications. This paper proposes a set of Bluetooth operating parameters required to meet the performance, usability and privacy requirements of reliable and secure mobile neuro-feedback applications. It presents a rating model, "Trusted Mobile BCI", based on those operating parameters, and validated the model with studies that leveraged mobile BCI technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑机接口可信蓝牙性能评估模型
蓝牙在脑机接口(BCI)研究和其他用例(包括门诊护理、远程医疗、健身跟踪和正念训练)中实现了出色的移动性。尽管有大量研究对脑机接口进行全面的性能评级,但几乎所有的文献都是从脑状态或脑功能分类准确性的角度来解决性能问题的。对于少数发表的解决BCI硬件性能的实验,他们也专注于提高分类准确性。本文探讨了最近的一些研究,并提出了基于增强隐私的BCI应用程序的可信性能评级,同时减少了基于移动脑电图的BCI应用程序的带宽需求。本文提出了一组蓝牙工作参数,以满足可靠、安全的移动神经反馈应用的性能、可用性和隐私要求。基于这些运行参数,提出了一个评级模型“可信移动BCI”,并通过利用移动BCI技术的研究对该模型进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Interpretable Deep Extreme Multi-Label Learning Evaluating Model Predictive Performance: A Medicare Fraud Detection Case Study AI Affective Conversational Robot with Hybrid Generative-Based and Retrieval-Based Dialogue Models Machine Learning for Classification of Economic Recessions IRI 2019 International Technical Program Committee
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1