RUITE: Refining UI Layout Aesthetics Using Transformer Encoder

Soliha Rahman, Vinoth Pandian Sermuga Pandian, M. Jarke
{"title":"RUITE: Refining UI Layout Aesthetics Using Transformer Encoder","authors":"Soliha Rahman, Vinoth Pandian Sermuga Pandian, M. Jarke","doi":"10.1145/3397482.3450716","DOIUrl":null,"url":null,"abstract":"In the User Interface (UI) design process, designers sketch the UI design (low fidelity prototype) with minimal focus on visual appearances before converting them to higher fidelities. Contrary to low-fidelity, higher fidelity prototypes require better layout and aesthetic quality, during which designers adhere to design laws and conventions. Numerous research studies attempt to automate this transformation of low fidelity sketches to higher fidelities using Deep Neural Networks. However, these studies seldom focus on the layout quality and aesthetics of the generated higher fidelity prototype. As a solution, this paper proposes RUITE, a UI layout refinement engine that optimizes layouts using a Transformer Encoder. We trained RUITE by adding noise to misalign 35,369 UI layouts from the RICO dataset as input and the original aligned layout annotation as ground-truth. Upon evaluation with 4,421 misaligned UI layouts, RUITE provides 77% accuracy in aligning them. RUITE improves the existing research on transforming low-fidelity sketches to higher fidelities by beautifying generated UI layouts.","PeriodicalId":216190,"journal":{"name":"26th International Conference on Intelligent User Interfaces - Companion","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th International Conference on Intelligent User Interfaces - Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397482.3450716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In the User Interface (UI) design process, designers sketch the UI design (low fidelity prototype) with minimal focus on visual appearances before converting them to higher fidelities. Contrary to low-fidelity, higher fidelity prototypes require better layout and aesthetic quality, during which designers adhere to design laws and conventions. Numerous research studies attempt to automate this transformation of low fidelity sketches to higher fidelities using Deep Neural Networks. However, these studies seldom focus on the layout quality and aesthetics of the generated higher fidelity prototype. As a solution, this paper proposes RUITE, a UI layout refinement engine that optimizes layouts using a Transformer Encoder. We trained RUITE by adding noise to misalign 35,369 UI layouts from the RICO dataset as input and the original aligned layout annotation as ground-truth. Upon evaluation with 4,421 misaligned UI layouts, RUITE provides 77% accuracy in aligning them. RUITE improves the existing research on transforming low-fidelity sketches to higher fidelities by beautifying generated UI layouts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RUITE:使用变压器编码器优化UI布局美学
在用户界面(UI)设计过程中,设计师绘制UI设计草图(低保真原型),在将其转换为高保真度之前,尽量减少对视觉外观的关注。与低保真度相反,高保真度原型需要更好的布局和美学质量,在此期间设计师要遵守设计法则和惯例。许多研究试图使用深度神经网络将低保真草图转换为高保真草图。然而,这些研究很少关注生成的高保真原型的布局质量和美学。作为解决方案,本文提出了RUITE,一个UI布局优化引擎,它使用一个变压器编码器来优化布局。我们通过添加噪声来训练RUITE,将来自RICO数据集的35,369个UI布局作为输入,并将原始对齐的布局注释作为ground-truth。在对4,421个未对齐的UI布局进行评估后,RUITE在对齐它们方面提供了77%的准确性。RUITE通过美化生成的UI布局,改进了现有的将低保真草图转换为高保真草图的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Over-sketching Operation to Realize Geometrical and Topological Editing across Multiple Objects in Sketch-based CAD Interface TIEVis: a Visual Analytics Dashboard for Temporal Information Extracted from Clinical Reports SynZ: Enhanced Synthetic Dataset for Training UI Element Detectors User-Controlled Content Translation in Social Media VisRec: A Hands-on Tutorial on Deep Learning for Visual Recommender Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1