Francesco Calvori, Drew D. Creal, S. J. Koopman, A. Lucas
{"title":"Testing for Parameter Instability in Competing Modeling Frameworks","authors":"Francesco Calvori, Drew D. Creal, S. J. Koopman, A. Lucas","doi":"10.2139/ssrn.2379997","DOIUrl":null,"url":null,"abstract":"We develop a new parameter stability test against the alternative of observation driven generalized autoregressive score dynamics. The new test generalizes the ARCH-LM test of Engle (1982) to settings beyond time-varying volatility and exploits any autocorrelation in the likelihood scores under the alternative. We compare the test's performance with that of alternative tests developed for competing time-varying parameter frameworks, such as structural breaks and observation driven parameter dynamics. The new test has higher and more stable power against alternatives with frequent regime switches or with non-local parameter driven time-variation. For parameter driven time variation close to the null or for infrequent structural changes, the test of Muller and Petalas (2010) performs best overall. We apply all tests empirically to a panel of losses given default over the period 1982--2010 and find significant evidence of parameter variation in the underlying beta distribution.","PeriodicalId":425229,"journal":{"name":"ERN: Hypothesis Testing (Topic)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Hypothesis Testing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2379997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
We develop a new parameter stability test against the alternative of observation driven generalized autoregressive score dynamics. The new test generalizes the ARCH-LM test of Engle (1982) to settings beyond time-varying volatility and exploits any autocorrelation in the likelihood scores under the alternative. We compare the test's performance with that of alternative tests developed for competing time-varying parameter frameworks, such as structural breaks and observation driven parameter dynamics. The new test has higher and more stable power against alternatives with frequent regime switches or with non-local parameter driven time-variation. For parameter driven time variation close to the null or for infrequent structural changes, the test of Muller and Petalas (2010) performs best overall. We apply all tests empirically to a panel of losses given default over the period 1982--2010 and find significant evidence of parameter variation in the underlying beta distribution.