Testing for Parameter Instability in Competing Modeling Frameworks

Francesco Calvori, Drew D. Creal, S. J. Koopman, A. Lucas
{"title":"Testing for Parameter Instability in Competing Modeling Frameworks","authors":"Francesco Calvori, Drew D. Creal, S. J. Koopman, A. Lucas","doi":"10.2139/ssrn.2379997","DOIUrl":null,"url":null,"abstract":"We develop a new parameter stability test against the alternative of observation driven generalized autoregressive score dynamics. The new test generalizes the ARCH-LM test of Engle (1982) to settings beyond time-varying volatility and exploits any autocorrelation in the likelihood scores under the alternative. We compare the test's performance with that of alternative tests developed for competing time-varying parameter frameworks, such as structural breaks and observation driven parameter dynamics. The new test has higher and more stable power against alternatives with frequent regime switches or with non-local parameter driven time-variation. For parameter driven time variation close to the null or for infrequent structural changes, the test of Muller and Petalas (2010) performs best overall. We apply all tests empirically to a panel of losses given default over the period 1982--2010 and find significant evidence of parameter variation in the underlying beta distribution.","PeriodicalId":425229,"journal":{"name":"ERN: Hypothesis Testing (Topic)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Hypothesis Testing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2379997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We develop a new parameter stability test against the alternative of observation driven generalized autoregressive score dynamics. The new test generalizes the ARCH-LM test of Engle (1982) to settings beyond time-varying volatility and exploits any autocorrelation in the likelihood scores under the alternative. We compare the test's performance with that of alternative tests developed for competing time-varying parameter frameworks, such as structural breaks and observation driven parameter dynamics. The new test has higher and more stable power against alternatives with frequent regime switches or with non-local parameter driven time-variation. For parameter driven time variation close to the null or for infrequent structural changes, the test of Muller and Petalas (2010) performs best overall. We apply all tests empirically to a panel of losses given default over the period 1982--2010 and find significant evidence of parameter variation in the underlying beta distribution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
竞争建模框架中参数不稳定性的测试
我们开发了一种新的参数稳定性检验,以对抗观测驱动的广义自回归分数动态。新的测试将Engle(1982)的ARCH-LM测试推广到超越时变波动率的设置,并利用替代方案下似然评分中的任何自相关性。我们将测试的性能与为竞争时变参数框架(如结构断裂和观测驱动参数动力学)开发的替代测试进行了比较。对于频繁状态切换和非局部参数驱动时变的替代方案,新测试具有更高和更稳定的功率。对于参数驱动的时间变化接近于零或不频繁的结构变化,Muller和Petalas(2010)的测试总体上表现最好。我们将所有测试应用于1982年至2010年期间的违约损失面板,并在潜在的beta分布中找到了参数变化的重要证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Lagrange-Multiplier Test for Large Heterogeneous Panel Data Models "Go Wild for a While!": A New Asymptotically Normal Test for Forecast Evaluation in Nested Models Tests of Conditional Predictive Ability: Existence, Size, and Power Inference for Large-Scale Linear Systems with Known Coefficients The Testing of Efficient Market Hypotheses: A Study of Indian Pharmaceutical Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1