{"title":"Polymer-sandwiched ultra-thin silicon(100) layer for flexible electronics","authors":"Yong-hua Zhang, S. Campbell, Liyuan Zhang","doi":"10.1109/BMEI.2015.7401531","DOIUrl":null,"url":null,"abstract":"Flexible electronics has gained increasing attention for biomedical engineering applications, solar cell and so on. In this paper, an SU-8/silicon(100)/SU-8 flexible composite sandwich structure is studied. Besides preventing corrosion to the underneath thin silicon membrane, SU-8 photoresist coated on the silicon membrane improves its flexibility as shown by a finite element (FE) simulation utilizing ANSYS software. Using plasma enhanced chemical vapor deposited SiO2/Si3N4 composite film as an etching mask, a 4\" silicon(100) wafer was thinned to 26μm without rupture in a 30 wt.% KOH solution. The thinned wafer was coated on both sides with 20μm of SU-8 photoresist and cut into strips. And then the strips were bent by a caliper to measure its radius of curvature. A sector model of bending deformation was adopted to estimate the radius of curvature. The determined minimal bending radius of the polymer-sandwiched ultra-thin silicon layer is no more than 3.3mm. The polymer-sandwiched ultra-thin silicon(100) layer can be used as a flexible substrate. And the fabrication of this sandwich structure is compatible with conventional microelectronic fabrication processing. It can be used as a post-fabrication process for high performance flexible electronics.","PeriodicalId":119361,"journal":{"name":"2015 8th International Conference on Biomedical Engineering and Informatics (BMEI)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 8th International Conference on Biomedical Engineering and Informatics (BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2015.7401531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Flexible electronics has gained increasing attention for biomedical engineering applications, solar cell and so on. In this paper, an SU-8/silicon(100)/SU-8 flexible composite sandwich structure is studied. Besides preventing corrosion to the underneath thin silicon membrane, SU-8 photoresist coated on the silicon membrane improves its flexibility as shown by a finite element (FE) simulation utilizing ANSYS software. Using plasma enhanced chemical vapor deposited SiO2/Si3N4 composite film as an etching mask, a 4" silicon(100) wafer was thinned to 26μm without rupture in a 30 wt.% KOH solution. The thinned wafer was coated on both sides with 20μm of SU-8 photoresist and cut into strips. And then the strips were bent by a caliper to measure its radius of curvature. A sector model of bending deformation was adopted to estimate the radius of curvature. The determined minimal bending radius of the polymer-sandwiched ultra-thin silicon layer is no more than 3.3mm. The polymer-sandwiched ultra-thin silicon(100) layer can be used as a flexible substrate. And the fabrication of this sandwich structure is compatible with conventional microelectronic fabrication processing. It can be used as a post-fabrication process for high performance flexible electronics.