Bangla phoneme recognition for ASR using multilayer neural network

Mohammed Rokibul Alam Kotwal, Manoj Banik, Qamrun Nahar Eity, M. N. Huda, G. Muhammad, Y. Alotaibi
{"title":"Bangla phoneme recognition for ASR using multilayer neural network","authors":"Mohammed Rokibul Alam Kotwal, Manoj Banik, Qamrun Nahar Eity, M. N. Huda, G. Muhammad, Y. Alotaibi","doi":"10.1109/ICCITECHN.2010.5723837","DOIUrl":null,"url":null,"abstract":"This paper presents a Bangla phoneme recognition method for Automatic Speech Recognition (ASR). The method consists of two stages: i) a multilayer neural network (MLN), which converts acoustic features, mel frequency cepstral coefficients (MFCCs), into phoneme probabilities and ii) the phoneme probabilities obtained from the first stage and corresponding Δ and ΔΔ parameters calculated by linear regression (LR) are inserted into a hidden Markov model (HMM) based classifier to obtain more accurate phoneme strings. From the experiments on Bangla speech corpus prepared by us, it is observed that the proposed method provides higher phoneme recognition performance than the existing method. Moreover, it requires a fewer mixture components in the HMMs.","PeriodicalId":149135,"journal":{"name":"2010 13th International Conference on Computer and Information Technology (ICCIT)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2010.5723837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper presents a Bangla phoneme recognition method for Automatic Speech Recognition (ASR). The method consists of two stages: i) a multilayer neural network (MLN), which converts acoustic features, mel frequency cepstral coefficients (MFCCs), into phoneme probabilities and ii) the phoneme probabilities obtained from the first stage and corresponding Δ and ΔΔ parameters calculated by linear regression (LR) are inserted into a hidden Markov model (HMM) based classifier to obtain more accurate phoneme strings. From the experiments on Bangla speech corpus prepared by us, it is observed that the proposed method provides higher phoneme recognition performance than the existing method. Moreover, it requires a fewer mixture components in the HMMs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多层神经网络的孟加拉语语音识别
提出了一种用于自动语音识别(ASR)的孟加拉语音素识别方法。该方法包括两个阶段:1)多层神经网络(MLN),将声学特征,mel频退系数(MFCCs)转换为音素概率;2)将第一阶段获得的音素概率以及通过线性回归(LR)计算的相应Δ和ΔΔ参数插入到基于隐马尔可夫模型(HMM)的分类器中,以获得更准确的音素字符串。通过对我们准备的孟加拉语语音语料库的实验,发现本文方法的音素识别性能优于现有方法。此外,它需要更少的混合成分在hmm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bivariate gamma distribution: A plausible solution for joint distribution of packet arrival and their sizes On the design of quaternary comparators Optimization technique for configuring IEEE 802.11b access point parameters to improve VoIP performance A multidimensional partitioning scheme for developing English to Bangla dictionary A context free grammar and its predictive parser for bangla grammar recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1