Assurance Guidance for Machine Learning in a Safety-Critical System

M. Feather, Philip C. Slingerland, S. Guerrini, Max Spolaor
{"title":"Assurance Guidance for Machine Learning in a Safety-Critical System","authors":"M. Feather, Philip C. Slingerland, S. Guerrini, Max Spolaor","doi":"10.1109/ISSREW55968.2022.00098","DOIUrl":null,"url":null,"abstract":"We are developing guidance for space domain assurance personnel on how to assure Artificial intelligence (AI) and Machine Learning (ML) systems. Key to such guidance will be an assurance process for these personnel, who may be unfamiliar with such systems, to follow. We are investigating one such process, the “Assurance of Machine Learning in Autonomous Systems (AMLAS)” from the University of York, UK. To gauge its suitability, we are (retrospectively) applying it to a safety critical AIIML system in the space domain. We report here on our experience so far in applying this process.","PeriodicalId":178302,"journal":{"name":"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW55968.2022.00098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We are developing guidance for space domain assurance personnel on how to assure Artificial intelligence (AI) and Machine Learning (ML) systems. Key to such guidance will be an assurance process for these personnel, who may be unfamiliar with such systems, to follow. We are investigating one such process, the “Assurance of Machine Learning in Autonomous Systems (AMLAS)” from the University of York, UK. To gauge its suitability, we are (retrospectively) applying it to a safety critical AIIML system in the space domain. We report here on our experience so far in applying this process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
安全关键系统中机器学习的保证指南
我们正在为空间领域保障人员制定关于如何确保人工智能(AI)和机器学习(ML)系统的指南。这种指导的关键将是让这些可能不熟悉这种制度的人员遵循一个保证程序。我们正在研究一个这样的过程,即来自英国约克大学的“自治系统中的机器学习保证(AMLAS)”。为了评估其适用性,我们(回顾性地)将其应用于空间域的安全关键AIIML系统。我们在此报告我们迄今在应用这一进程方面的经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Complexity Metrics with Hotspot Analysis to Support Software Sustainability Evaluating Human Locomotion Safety in Mobile Robots Populated Environments Performance Bottleneck Analysis of Drone Computation Offloading to a Shared Fog Node Early Software Defect Prediction: Right-Shifting Software Effort Data into a Defect Curve A Survey on Autonomous Driving System Simulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1