Central Dogma of Molecular Biology - New Paradigm in Evolutionary Computation

C. Rotar
{"title":"Central Dogma of Molecular Biology - New Paradigm in Evolutionary Computation","authors":"C. Rotar","doi":"10.1109/SYNASC.2014.46","DOIUrl":null,"url":null,"abstract":"The aim of this study is to develop a new evolutionary computation paradigm in terms of molecular biology. Standard genetic algorithms are heuristics inspired by the simplified model of natural evolution and genetics. The latest discoveries and innovations from molecular biology, related to the conventional central dogma of molecular biology, generate the necessity of updating the genetic algorithms, although successfully applied in various complex tasks. In this direction, the research in Evolutionary Computation requires a reconsideration of the concepts and theories underlying the development of these popular optimization techniques. Since the emergence of the new features is important in the evolution, the DNA code requires progress. Evolutionary Computation which is based on the mutation and the natural selection can be reconsidered in terms of protein synthesis and reverse transcription. From the computational perspective, a biological phenomenon might be interpreted in various forms in order to obtain reliable computational techniques.","PeriodicalId":150575,"journal":{"name":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2014.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The aim of this study is to develop a new evolutionary computation paradigm in terms of molecular biology. Standard genetic algorithms are heuristics inspired by the simplified model of natural evolution and genetics. The latest discoveries and innovations from molecular biology, related to the conventional central dogma of molecular biology, generate the necessity of updating the genetic algorithms, although successfully applied in various complex tasks. In this direction, the research in Evolutionary Computation requires a reconsideration of the concepts and theories underlying the development of these popular optimization techniques. Since the emergence of the new features is important in the evolution, the DNA code requires progress. Evolutionary Computation which is based on the mutation and the natural selection can be reconsidered in terms of protein synthesis and reverse transcription. From the computational perspective, a biological phenomenon might be interpreted in various forms in order to obtain reliable computational techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子生物学的中心法则——进化计算的新范式
本研究的目的是在分子生物学方面发展一种新的进化计算范式。标准遗传算法是受自然进化和遗传学简化模型启发的启发式算法。分子生物学的最新发现和创新,与传统的分子生物学中心教条有关,产生了更新遗传算法的必要性,尽管遗传算法已经成功地应用于各种复杂的任务中。在这个方向上,进化计算的研究需要重新考虑这些流行的优化技术发展的概念和理论。由于新特征的出现在进化中很重要,DNA密码需要进步。基于突变和自然选择的进化计算可以从蛋白质合成和逆转录的角度重新考虑。从计算的角度来看,为了获得可靠的计算技术,一个生物现象可以用不同的形式来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating Weighted Round Robin Load Balancing for Cloud Web Services Lipschitz Bounds for Noise Robustness in Compressive Sensing: Two Algorithms Open and Interoperable Socio-technical Networks Computing Homological Information Based on Directed Graphs within Discrete Objects Automated Synthesis of Target-Dependent Programs for Polynomial Evaluation in Fixed-Point Arithmetic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1