Sandy C. Lauguico, Ronnie S. Concepcion, Rogelio Ruzcko Tobias, A. Bandala, R. R. Vicerra, E. Dadios
{"title":"Grape Leaf Multi-disease Detection with Confidence Value Using Transfer Learning Integrated to Regions with Convolutional Neural Networks","authors":"Sandy C. Lauguico, Ronnie S. Concepcion, Rogelio Ruzcko Tobias, A. Bandala, R. R. Vicerra, E. Dadios","doi":"10.1109/TENCON50793.2020.9293866","DOIUrl":null,"url":null,"abstract":"Identifying variant diseases in leaves is a significant method for optimizing food production. As the global population continues to arise and agricultural space continues to decline, every possible way of increasing the supply of food in any given condition and limited resources will address the above-mentioned problems. This study proposes a way for detecting three different diseases from grape leaves apart from the healthy leaves and considers the confidence value of the system in correctly identifying the classes. The diseases are namely: Black Rot, Black Measles, and Isariopsis. The system conducted a comparative analysis to determine which among the three pre-trained networks, AlexNet, GoogLeNet, and ResNet-18 will be the most suitable network to be integrated with Regions with Convolutional Neural Networks (RCNN) in performing multiple object detection in a given image. The data used in training the models comprised of annotated image data represented as a ground truth table with image files and their corresponding bounding boxes coordinates. The models evaluated resulted to AlexNet being the best pre-trained network to be working on the RCNN with an accuracy of 95.65%. The other two models from GoogLeNet and ResNet-18 only obtained accuracies of 92.29% and 89.49% respectively.","PeriodicalId":283131,"journal":{"name":"2020 IEEE REGION 10 CONFERENCE (TENCON)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE REGION 10 CONFERENCE (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON50793.2020.9293866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Identifying variant diseases in leaves is a significant method for optimizing food production. As the global population continues to arise and agricultural space continues to decline, every possible way of increasing the supply of food in any given condition and limited resources will address the above-mentioned problems. This study proposes a way for detecting three different diseases from grape leaves apart from the healthy leaves and considers the confidence value of the system in correctly identifying the classes. The diseases are namely: Black Rot, Black Measles, and Isariopsis. The system conducted a comparative analysis to determine which among the three pre-trained networks, AlexNet, GoogLeNet, and ResNet-18 will be the most suitable network to be integrated with Regions with Convolutional Neural Networks (RCNN) in performing multiple object detection in a given image. The data used in training the models comprised of annotated image data represented as a ground truth table with image files and their corresponding bounding boxes coordinates. The models evaluated resulted to AlexNet being the best pre-trained network to be working on the RCNN with an accuracy of 95.65%. The other two models from GoogLeNet and ResNet-18 only obtained accuracies of 92.29% and 89.49% respectively.