Towards training an agent in augmented reality world with reinforcement learning

V. V. R. M. K. Muvva, Naresh Adhikari, Amrita Ghimire
{"title":"Towards training an agent in augmented reality world with reinforcement learning","authors":"V. V. R. M. K. Muvva, Naresh Adhikari, Amrita Ghimire","doi":"10.23919/ICCAS.2017.8204283","DOIUrl":null,"url":null,"abstract":"Reinforcement learning (RL) helps an agent to learn an optimal path within a specific environment while maximizing its performance. Reinforcement learning (RL) plays a crucial role on training an agent to accomplish a specific job in an environment. To train an agent an optimal policy, the robot must go through intensive training which is not cost-effective in the real-world. A cost-effective solution is required for training an agent by using a virtual environment so that the agent learns an optimal policy, which can be used in virtual as well as real environment for reaching the goal state. In this paper, a new method is purposed to train a physical robot to evade mix of physical and virtual obstacles to reach a desired goal state using optimal policy obtained by training the robot in an augmented reality (AR) world with one of the active reinforcement learning (RL) techniques, known as Q-learning.","PeriodicalId":140598,"journal":{"name":"2017 17th International Conference on Control, Automation and Systems (ICCAS)","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 17th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS.2017.8204283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Reinforcement learning (RL) helps an agent to learn an optimal path within a specific environment while maximizing its performance. Reinforcement learning (RL) plays a crucial role on training an agent to accomplish a specific job in an environment. To train an agent an optimal policy, the robot must go through intensive training which is not cost-effective in the real-world. A cost-effective solution is required for training an agent by using a virtual environment so that the agent learns an optimal policy, which can be used in virtual as well as real environment for reaching the goal state. In this paper, a new method is purposed to train a physical robot to evade mix of physical and virtual obstacles to reach a desired goal state using optimal policy obtained by training the robot in an augmented reality (AR) world with one of the active reinforcement learning (RL) techniques, known as Q-learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用强化学习训练增强现实世界中的智能体
强化学习(RL)帮助智能体在特定环境中学习最优路径,同时最大化其性能。强化学习(RL)在训练智能体在特定环境中完成特定工作方面起着至关重要的作用。为了训练智能体的最优策略,机器人必须经过密集的训练,这在现实世界中是不划算的。利用虚拟环境训练智能体需要一种经济有效的解决方案,使智能体学习到最优策略,该策略可以在虚拟环境和真实环境中使用,以达到目标状态。本文提出了一种新的方法,通过在增强现实(AR)世界中使用一种被称为q学习的主动强化学习(RL)技术来训练物理机器人,使其避开物理和虚拟的混合障碍物,从而达到理想的目标状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of a soft wearable robotic suit on metabolic cost and gait characteristics in healthy young subjects Jumping pattern generation for one-legged jumping robot Radial basis function neural network based PID control for quad-rotor flying robot A study of eye contact for tabletop robot Multi-objective optimal operation with demand management and voltage stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1