{"title":"Two-Photon Absorption","authors":"M. Weber","doi":"10.1201/9781003067955-20","DOIUrl":null,"url":null,"abstract":"Two-photon absorption may seem very similar to non-resonance Raman, and was in fact predicted due to this phenomena. In both cases, a non-resonant photon is used for excitation. However, in the absorption case a secondary non-resonant photon is used for excitation as well, while in Raman a second non-resonant photon is emitted. For Raman this results in occupation of an energy state at the difference of the frequencies of the absorbed and emitted photon. However, in two-photon absorption this results in the occupation of an energy state at the sum of the frequencies of the absorbed photons. The basic process is illustrated below in Figure 1.","PeriodicalId":119071,"journal":{"name":"CRC HANDBOOK of LASER SCIENCE and TECHNOLOGY","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CRC HANDBOOK of LASER SCIENCE and TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781003067955-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Two-photon absorption may seem very similar to non-resonance Raman, and was in fact predicted due to this phenomena. In both cases, a non-resonant photon is used for excitation. However, in the absorption case a secondary non-resonant photon is used for excitation as well, while in Raman a second non-resonant photon is emitted. For Raman this results in occupation of an energy state at the difference of the frequencies of the absorbed and emitted photon. However, in two-photon absorption this results in the occupation of an energy state at the sum of the frequencies of the absorbed photons. The basic process is illustrated below in Figure 1.