{"title":"FlexHaptics: A Design Method for Passive Haptic Inputs Using Planar Compliant Structures","authors":"Hongnan Lin, Liang He, Fangli Song, Yifan Li, Tingyu Cheng, C. Zheng, Wei Wang, Hyun-Man Oh","doi":"10.1145/3491102.3502113","DOIUrl":null,"url":null,"abstract":"This paper presents FlexHaptics, a design method for creating custom haptic input interfaces. Our approach leverages planar compliant structures whose force-deformation relationship can be altered by adjusting the geometries. Embedded with such structures, a FlexHaptics module exerts a fine-tunable haptic effect (i.e., resistance, detent, or bounce) along a movement path (i.e., linear, rotary, or ortho-planar). These modules can work separately or combine into an interface with complex movement paths and haptic effects. To enable the parametric design of FlexHaptic modules, we provide a design editor that converts user-specified haptic properties into underlying mechanical structures of haptic modules. We validate our approach and demonstrate the potential of FlexHaptic modules through six application examples, including a slider control for a painting application and a piano keyboard interface on touchscreens, a tactile low vision timer, VR game controllers, and a compound input device of a joystick and a two-step button.","PeriodicalId":269130,"journal":{"name":"Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3491102.3502113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper presents FlexHaptics, a design method for creating custom haptic input interfaces. Our approach leverages planar compliant structures whose force-deformation relationship can be altered by adjusting the geometries. Embedded with such structures, a FlexHaptics module exerts a fine-tunable haptic effect (i.e., resistance, detent, or bounce) along a movement path (i.e., linear, rotary, or ortho-planar). These modules can work separately or combine into an interface with complex movement paths and haptic effects. To enable the parametric design of FlexHaptic modules, we provide a design editor that converts user-specified haptic properties into underlying mechanical structures of haptic modules. We validate our approach and demonstrate the potential of FlexHaptic modules through six application examples, including a slider control for a painting application and a piano keyboard interface on touchscreens, a tactile low vision timer, VR game controllers, and a compound input device of a joystick and a two-step button.